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Abstract

The volume of regular polyhedra have been a source of interest to geometers since the
time of Plato and Aristotle, and formulae for computing the volumes of the dodecahedron
and icosahedron can be traced back to ancient Greece. In this paper, we revisit these volumes
from a slightly different perspective —we illustrate various constructions that permit the final
formulae to be derived by simple visual inspection.

In presenting these techniques, we gain a fresh perspective on the relationship between
the dodecahedron, icosahedron, cube, and the golden ratio φ. The visual nature of these
computational techniques in combination with zome models make these proofs easily acces-
sible.

This paper was authored and typeset using the rich suite of Open Source tools available
on the Linux desktop. At a time when most of the attention around Open Source Software is
focused on the operating system, we would like to draw readers’ attention to the wonderful
array of high-quality Open Source authoring and document preparation tools created over the
last 25 years by the (LA)TEX community. Figures in this paper were drawn using declarative
authoring packages that enabled the first author to draw reliably without having to look at the
final output. The high-level markup also makes this content long-lived.

c©This work is being made available under the same copyright as that used by the Linux
Documentation Project —see http://www.linuxdoc.org/LDP-COPYRIGHT.html.

1 Introduction

The volume of regular polyhedra have been a source of interest to geometers since the time of
Plato and Aristotle, and formulae for computing the volumes of the dodecahedron and icosahe-
dron can be traced back to ancient Greece —[Coe89, Coe73, Wei98]. In this paper, we revisit

1

http://www.cs.cornell.edu/home/raman
mailto:raman@cs.cornell.edu
http://www.cs.rpi.edu/~moorthy
mailto:moorthy@cs.rpi.edu
http://www.linuxdoc.org/LDP-COPYRIGHT.html


1 INTRODUCTION 1.1 Basic Lengths

these volumes from a slightly different perspective. We illustrate various constructions that per-
mit the final formulae to be derived by simple visual inspection.

In presenting these techniques, we gain a fresh perspective on the relationship between the
dodecahedron, icosahedron, cube, and the golden ratio φ. All of the techniques described in this
paper are made tangible using Zome systems’ polyhedra building kit. The visual nature of our
computational technique along with zome models make these proofs accessible to students of all
levels.

The techniques described in this paper demonstrate the value of picking an appropriate frame
of reference when solving problems in mathematics. Using Zome Systems building kit, our basic
units of measure are 1, sin 60, sin 72,

√
2, 1√

2
and these same lengths scaled by powers of the

Golden Ratio φ. These units make for easy computation of expressions that would otherwise be
computationally awkward. In this context, selecting the right basic units of measure is equivalent
to picking an appropriate coordinate system or equivalently, the right set of basis vectors.

1.1 Basic Lengths

Zome Systems —http://www.zometool.com—([HP01]) leverages the following mathe-
matical facts:

• The symmetry of the dodecahedron and icosahedron.

• The golden ratio and its scaling property.

Nodes in the zome kit have all the directions needed to build the various Platonic solids.
Zome struts come in four different colors (blue, red, yellow, green) with struts of a given color
corresponding to a given symmetry axis. Struts of each color come in three different sizes, and
successive struts of the same color are in the golden ratio. In the rest of this paper, we refer to
zome struts by symbols made up of the first letter of the color, suffixed by (1, 2, . . . ); see table1
on the following page for a table of all the zome lengths. The table also shows the mathematical
significance of these lengths in brief; the rest of the paper builds on these properties.

1.2 Identities Of The Golden Ratio

This section derives some useful identities involving the golden ratio φ and the basic lengths in
the zome system.
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1 INTRODUCTION 1.2 Identities Of The Golden Ratio

Color Significance 1 2 3

Blue Unity 1 φ φ2

Red Radius of I1 sin 72 φ sin 72 φ2 sin 72

Yellow Radius of C1 sin 60 φ sin 60 φ2 sin 60

Green Face diagonal of C1

√
2 φ

√
2 φ2

√
2

green Radius of a C1 face 1√
2

φ 1√
2

φ2 1√
2

Table 1: Basic zome lengths. Zome struts come in different colors and sizes. The sizes are
mathematically significant. Here, I1 denotes the unit icosahedron and C1 denotes the unit cube.

Successive Powers

Successive powers of the golden ratio form a Fibonacci sequence.

1 + φ = φ2 (1.1)

φ + φ2 = φ3 (1.2)
... =

...

φn−2 + φn−1 = φn (1.3)

Golden ratio and the diagonal of the pentagon.

Observe one of the small isosceles triangles in figure 1 on the next page —it has base B2 = φ

and sides B1 = 1. Dropping a perpendicular from the apex of this triangle to its base bisects its
base B2 = φ. From the right-triangles that result, we get

2 cos 36 = φ (1.4)

Identity of the golden rhombus.

Observing that R1 lines constitute the radii of a golden rectangle gives R1 in terms of the golden
ratio. R1 can be computed by observing the right-triangle marked ABC in figure2 on the follow-
ing page.

1 + φ2 = 4R1
2 (1.5)
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1 INTRODUCTION 1.2 Identities Of The Golden Ratio

φ

φ

Figure 1: Diagonal of a unit pentagon has length φ. Drawing 2 diagonals incident on a vertex
of the pentagon divides it into 3 triangles, and the pentagonal area can be computed by summing
these triangles to get sin 72(1 + φ

2
).

�

�
AB1

B2

�B
1

�

C

φ

Figure 2: Relation between the golden rectangle and golden rhombus. Observe right-triangle
marked ABC to derive the identity given by equation (1.6).

� � ➣➣ ➠➠ ➹✖



1 INTRODUCTION 1.2 Identities Of The Golden Ratio

R1 in terms of trigonometric ratios

The length of R1 can be expressed in terms of trigonometric ratios by putting together the identi-
ties derived so far.

cos 36 =
φ

2
(1.6)

cos 2 ∗ 18 = 2 cos2 18 − 1 (1.7)

= 2 sin2 72 − 1 (1.8)

Combining these gives

sin2 72 =
1

2
+

φ

4
(1.9)

=
2 + φ

4
(1.10)

=
1 + φ2

4
(1.11)

= R2
1 (1.12)

Powers of the golden ratio and trigonometry.

Construct a right-triangle of sides B1 and B3 —its hypotenuse is the result of joining the B1 and
B3 lines using 2Y2 = φ

√
3 struts —see figure3 on the next page. This gives the identities

1 + φ4 = 3φ2 (1.13)
1

φ2
= 3 − φ2 (1.14)

Computing other trigonometric ratios

From the identities for sin 72 and cos 36, we can derive sin 36 as follows:
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1 INTRODUCTION 1.2 Identities Of The Golden Ratio

�

� A
B1

B3

�

B

1

� C

φ2
2Y2 = φ

√
3

Figure 3: This figure shows a Y2 yellow rhombus and its relation to a rectangle of sides B1 × B3

rectangle. It is used in deriving the identity shown in equation (1.13) —observe that this figure is
the same as figure2 on page 4 scaled by a factor of φ in the Y direction.
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2 LOCATING VERTICES OF VARIOUS POLYHEDRA

2 sin 36 cos 36 = sin 72 (1.15)

2 cos 36 = φ (1.16)

sin 36 =

√

1 + φ2

2φ
(1.17)

2 Locating Vertices Of Various Polyhedra

This section locates the vertex coordinates of regular polyhedra using zome models. Construc-
tions used in this exercise prove useful in computing distances needed for the volume computa-
tions.

2.1 Locating Vertices Of The Cube

Construct a unit cube of side B1 = 1. Let (0, 0, 0) be the center of the cube. The coordinates of
the cube vertices are

{(±1

2
,±1

2
,±1

2
)}.

Notice that by the choice of the basic zome lengths, the center of the cube can be connected
to the 8 cube vertices by Y1 struts. Thus, the radius of the unit cube is

√
3

2
= sin 60 = Y1.

2.2 Locating Vertices Of The Tetrahedron

Construct a unit B1 cube. Pick the cube vertex that lies in the first octant having coordinates
T = (1

2
, 1

2
, 1

2
). Draw the 3 face diagonals of the cube incident on vertex T . Each diagonal has

length G1 =
√

2. Finally, draw the face diagonals of the cube that connect the end-points of the
3 diagonals just drawn. This constructs a tetrahedron of side G1 =

√
2 inside the B1 cube.

Let (0, 0, 0) be the center of the cube —notice that it is also the center of the G1 tetrahedron.
The vertex coordinates of this G1 tetrahedron can be read from this model as:

(1
2
, 1

2
, 1

2
) (−1

2
, −1

2
, 1

2
)

(1
2
, −1

2
, −1

2
) (−1

2
, 1

2
, −1

2
)

As shown in section 2.1, the center of the above model can be joined to the cube vertices
using Y1 = sin 60 yellow lines. From this it follows that the center of the G1 tetrahedron can be
joined to the tetrahedral vertices using Y1 = sin 60 lines. Observe that drawing these radii divides
the interior of the tetrahedron into 4 congruent pyramids with a G1 equilateral triangle as base
and vertical sides Y1.
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2 LOCATING VERTICES OF VARIOUS POLYHEDRA2.3 Locating Vertices Of The Octahedron

2.3 Locating Vertices Of The Octahedron

Construct an octahedron of side G1 =
√

2. View this model placed on one of its vertices so
that the opposite vertex is directly above the chosen vertex. Let (0, 0, 0) be the center of the
octahedron. Let the symmetry axis formed by joining the top and bottom vertices denote the Z

axis. Connect these vertices to the center using B1 = 1 struts. Similarly, locate opposite pairs of
vertices and draw the X and Y axes. From this model, the vertex coordinates of the octahedron
are given by:

{(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.

2.4 Locating Vertices Of The Rhombic Dodecahedron

Construct a B1 unit cube. Construct pyramids of side Y1 = sin 60 on each face of this cube.
Removing the cube edges leaves a rhombic dodecahedron of side Y1. The rhombic dodecahedron
has 12 faces and 14 vertices.

Vertices of the rhombic dodecahedron can be categorized as:

• Vertices of the unit cube.

• The apex of each of the 6 pyramids described above.

Let (0, 0, 0) be the center of this rhombic dodecahedron —hence the center of the cube. This
gives the coordinates of the 8 of the 14 vertices to be

(±1

2
,±1

2
,±1

2
).

Next, observe that by construction, the Y1 pyramids built on each face are congruent to the pyra-
mids constructed by connecting the center of the unit cube to its vertices —see section 2.1 on the
page before. Thus, the height of these pyramids is half the side of the cube and therefore 1

2
.

The coordinates of these 6 vertices of the rhombic dodecahedron are then given by

{(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.

Notice that from the above, the rhombic dodecahedron has all the vertices of a B1 cube and
the dual G1 octahedron —a fact that will be used later in the techniques for computing the volume
of the rhombic dodecahedron.

� � ➣➣ ➠➠ ➹✖



2 LOCATING VERTICES OF VARIOUS POLYHEDRA2.5 Locating Vertices Of The Cube-octahedron

2.5 Locating Vertices Of The Cube-octahedron

The cube-octahedron is the dual to the rhombic dodecahedron described in section 2.4 on the
preceding page. The rhombic dodecahedron was shown to have the vertices of the cube and the
octahedron; by duality, the cube-octahedron has the faces of the cube and the octahedron.

Construct a 2B1 cube. Join the mid-points of adjacent edges using G1 =
√

2 green lines.
Removing the cube edges leaves a G1 cube-octahedron.

Let (0, 0, 0) be the center of the 2B1 cube, hence the center of the cube-octahedron. From this
model, the vertex coordinates can be read as:

{(0,±1,±1), (±1, 0,±1), (±1,±1, 0)}.

2.6 Locating Vertices Of The Dodecahedron

Consider the unit dodecahedron with sides B1. Each face is a unit pentagon. A diagonal of a
pentagon is in the golden ratio to the length of its side; consequently, any face diagonal can be
drawn by using a B2 strut —see figure1 on page 4. Place this dodecahedron on one of its edges;
this base edge can be connected to its opposite (top) edge using a pair of B3 struts to form a
B3 × B1 rectangle. View this model with the B3 × B1 rectangle just constructed lying in the
ZX plane. Locate opposing pairs of edges of the dodecahedron to similarly construct B3 × B1

rectangles in the XY and YZ planes. This consumes 12 of the 20 vertices.
View this model with the XY, YZ and ZX planes in place; the remaining 8 vertices form a

cube whose sides are face diagonals of the dodecahedron and therefore of length B2 = φ.
Let (0, 0, 0) be the center of the dodecahedron. Then the 8 vertices making up the cube have

coordinates (±φ

2
,±φ

2
,±φ

2
).

The 4 vertices of the B3 × B1 rectangle in the XY plane have coordinates (±φ2

2
,±1

2
, 0). The

remaining coordinates can be located in an analogous manner by examining the rectangles in the
ZX and YZ planes —notice that these are just rotated copies of the B3 × B1 rectangle in the XY

plane —see figure4 on the following page for a view of one face of the dodecahedron from this
model.

2.7 Locating Vertices Of The Icosahedron

Construct a unit icosahedron of side B1. Place it on one of its edges, and notice that the bottom
edge can be connected to its opposite (top) edge using a pair of B2 = φ struts. View this model
so the B2 × B1 golden rectangle just constructed lies in the ZX plane. Locate opposing pairs of
edges to construct B2 × B1 rectangles in the XY and YZ planes. This accounts for the 12 vertices
of the icosahedron.
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2 LOCATING VERTICES OF VARIOUS POLYHEDRA2.8 Locating Vertices Of The Rhombic Triacontahedron

φ

Figure 4: This view shows the three-dimensional perspective of a face of the dodecahedron with
one of its face diagonals. The face is tilted by 58.282525589 deg = arctan φ.

Let (0, 0, 0) be the center of the icosahedron. The 4 vertices of the B2 × B1 rectangle in
the XY plane have coordinates (±φ

2
,±1

2
, 0). The coordinates of the remaining 8 vertices of the

icosahedron can be similarly read off the model —notice that they are the appropriate rotation of
the 4 vertices shown above. Thus, we get the coordinates for the 12 vertices of the icosahedron
to be:

(±φ

2
,±1

2
, 0)

(0,±φ

2
,±1

2
)

(1
2
, 0,±φ

2
)

(2.1)

Notice that this construction also reveals that a unit icosahedron can be packed inside a cube
of side φ —a fact that will be used later in one of the techniques for computing the volume of the
icosahedron.

As shown in the table of basic lengths (see table 1 on page 3), the R1 zome strut is the radius
of the B1 icosahedron. Observe that these 12 radii draw the diagonals of the B2 × B1 golden
rectangles in the XY, YZ and ZX planes in the above model.

2.8 Locating Vertices Of The Rhombic Triacontahedron

The rhombic triacontahedron is an Archimedian polyhedron with 30 faces and 32 vertices. In
locating its vertices, we will see that it has the vertices of the dodecahedron and its dual icosahe-
dron.

Construct a B1 dodecahedron. Construct red pyramids of vertical side R1 = sin 72 on each of
the faces of the dodecahedron. The edges of the dodecahedron form the short diagonal of each
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2 LOCATING VERTICES OF VARIOUS POLYHEDRA2.9 Locating Vertices Of The Icosidodecahedron

rhombic face —removing these edges of the dodecahedron leaves a red rhombic triacontahedron
of side R1 = sin 72.

Next, observe that the long diagonal of each rhombic face can be drawn using B2 = φ. Thus,
the diagonals of the rhombic faces are in the golden ratio and each face of the rhombic triacon-
tahedron is a golden rhombus. Finally, observe that drawing the B2 diagonals and removing the
red edges would leave a B2 icosahedron. See figure2 on page 4 for an illustration showing the
relation between the golden rhombus and the fact that the radii of a B1 icosahedron draw the
diagonals of a golden rectangle as described in 2.7 on page 9.

2.9 Locating Vertices Of The Icosidodecahedron

The icosidodecahedron has 32 faces and 30 vertices, and is dual to the rhombic triacontahedron
described in 2.8 on the preceding page. Since the rhombic triacontahedron has all the vertices of
the dodecahedron and its dual icosahedron, by duality it follows that the icosidodecahedron has
all the faces of the dodecahedron and icosahedron.

Observe that a zome node has 30 holes that can take blue struts. Inserting B2 struts into each of
these 30 holes and connecting their end-points with B1 struts constructs an B1 icosidodecahedron.
By construction, the radius of the icosidodecahedron of side B1 = 1 is B2 = φ.

Let (0, 0, 0) be the center of the icosidodecahedron. Place this model on one of its vertices,
and observe that the B2 struts connecting the center to the bottom and top vertices can be viewed
as the Z axis. Locate the X and Y axes in a similar manner to see that 6 of the 30 vertices of the
icosidodecahedron are also vertices of an octahedron of side G2 = φ

√
2. This gives 6 of the 30

vertices to be

{(±φ, 0, 0), (0,±φ, 0), (0, 0,±φ)}.

We obtained the above fact by placing the icosidodecahedron on any one of its vertices —
it therefore follows that the remaining 24 vertices can in turn be divided into disjoint sets of 6

vertices each, with each set corresponding to the vertices of a rotated copy of the G2 = φ
√

2

octahedron.
This leads to an important result —the unit icosidodecahedron can be wrapped around the

compound of 5 concentric octahedra of side φ
√

2.
To compute the coordinates of the remaining vertices of the icosidodecahedron, consider the

model built in section 2.6 on page 9 where we constructed a B1 icosahedron. Scale this model by
2 to obtain a 2B1 icosahedron.
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2 LOCATING VERTICES OF VARIOUS POLYHEDRA2.9 Locating Vertices Of The Icosidodecahedron

Let (0, 0, 0) be the center of this model. By scaling all values computed in equation (2.1), we
first locate the 12 vertices of the 2B1 icosahedron to be:

(±φ,±1, 0)

(0,±φ,±1)

(±1, 0,±φ)

(2.2)

Next, observe the 2B1×2B2 golden rectangles in the XY, YZ and ZX planes, and consider the
mid-points of the 2B1 sides. These have coordinates {(±φ, 0, 0), (0,±φ, 0), (0, 0,±φ)}. Thus,
the mid-points of 6 of the 30 edges of the 2B1 icosahedron give the vertices of the G2 octahedron.
By symmetry, it follows that the 30 edges of the 2B1 icosahedron can be partitioned into 5 disjoint
sets of 6 edges each, where the mid-points of edges in any given partition form a rotated copy of
a G2 octahedron.

By combining the above with the earlier result that the vertices of the icosidodecahedron
are the same as the vertices of the compound of 5 concentric G2 octahedra, we can compute the
coordinates of all 30 vertices by reading off the mid-points of the 30 edges of the 2B1 icosahedron.

Observe that by construction the 2B1 icosahedron as oriented is symmetric about the coordi-
nate axis. Therefore, we need only compute the coordinates of the remaining 24 vertices in one
of the octants.

Consider the 3 vertices of the icosidodecahedron in the first octant. By construction, these are
the mid-points of the sides of the 2B1 triangle shown in figure5 on the following page.

The coordinates of of the 30 vertices of the icosidodecahedron are therefore:

(±φ, 0, 0) (0,±φ, 0) (0, 0,±φ)

(±φ

2
,±1+φ

2
,±1

2
)

(±1+φ

2
,±1

2
,±φ

2
)

(±1
2
,±φ

2
,±1+φ

2
)

(2.3)

Finally, observe that this construction has shown how the icosidodecahedron can be wrapped
around the compound of 5 concentric octahedra. Applying duality to this result, and using the
fact that:

• Vertices map to faces in the dual.

• The inside and outside reverse roles in the dual.

the rhombic triacontahedron which is dual to the icosahedron can be seen to have each of its 30

rhombic faces on each of the 30 cube faces of the compound of 5 concentric cubes.
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2 LOCATING VERTICES OF VARIOUS POLYHEDRA2.9 Locating Vertices Of The Icosidodecahedron

� �� ��

��

��

��

� �
(φ, 1, 0) �

(0, φ, 1)

�

(1, 0, φ)

�
(φ

2
, 1+φ

2
, 1

2
)

� (1+φ

2
, 1

2
, φ

2
)� (1

2
, φ

2
, 1+φ

2
)

Figure 5: Face of the 2B1 icosahedron in the first octant. Its mid-points give 3 vertices of the
icosidodecahedron of side B1, and by symmetry,, these help locating the vertices of the icosido-
decahedron that do not lie on the coordinate axes.
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3 USING THE CUBE TO COMPUTE VOLUMES

3 Using The Cube To Compute Volumes

3.1 Volume Of The Tetrahedron

Consider the G1 tetrahedron constructed in section 2.2 on page 7. From this model, the interior
of the B1 cube can be decomposed into a G1 tetrahedron and 4 pyramids having a green base and
blue vertical sides. Place the model on one of the cube faces, and observe one of these pyramids.
It has a right triangle of sides B1, B1, G1 as base, and a side of the B1 cube as its height. This
gives the volume of this pyramid to be:

1

2

1

3
=

1

6
.

Subtracting 4 copies of this pyramid from the cube gives the volume of the G1 tetrahedron VT to
be:

VT = 13 −
4

6

=
1

3
.

(3.1)

3.2 Volume Of The Octahedron

Consider the G1 octahedron constructed in section 2.3 on page 8. Place it on one of its triangular
faces. Construct a G1 tetrahedron and observe that the tetrahedron has the same face as the
octahedron. Take 4 copies of this G1 tetrahedron, and place them on 4 faces of the octahedron
to form a 2G1 tetrahedron. This shows that the 2G1 tetrahedron can be decomposed into an
octahedron and 4 tetrahedra.

We computed the volume of the G1 tetrahedron to be 1
3

in section 3.1. By applying the scaling
rule, the volume of the 2G1 tetrahedron is 8

3
. Subtracting 4 copies of the G1 tetrahedron from the

2G1 tetrahedron gives the volume of the G1 octahedron VO:

VO =
8

3
− 4

1

3

=
4

3
.

(3.2)

3.3 Volume Of The Rhombic Dodecahedron

Consider the rhombic dodecahedron constructed in section 2.4 on page 8. Its volume can be
decomposed into the unit cube and 6 pyramids having a B1 square base and Y1 vertical sides.
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3 USING THE CUBE TO COMPUTE VOLUMES3.4 Volume Of The Cube-octahedron

Section 2.4 on page 8 also showed the height of this pyramid to be 1
2
. This gives the volume of

this pyramid VP to be:

VP =
1

2

1

3

=
1

6
.

(3.3)

The volume of the rhombic dodecahedron VRD is therefore:

VRD = 1 + 6
1

6

= 2

= Twice the volume of the unit cube.

(3.4)

This can also be seen by realizing that the yellow pyramid constructed on each face of the B1

cube is congruent to the pyramid constructed by joining the center of the cube to the vertices of a
given face. Thus, the 6 pyramids constructed outside the cube can be packed into the interior of
the cube, giving the volume of the Y1 rhombic dodecahedron to be twice the volume of the unit
cube.

Finally, consider once again the model of the rhombic dodecahedron of side sin 60 and draw
the longer diagonal of each face. By the choice of zome lengths, this is a G1 =

√
2 green line.

Drawing the long diagonal of all 12 faces gives a G1 octahedron. This decomposes the rhombic
dodecahedron into an octahedron and 8 pyramids having a G1 equilateral triangle as base and Y1

vertical sides. We showed in section 2.2 on page 7 that this pyramid is 1/4 the volume of the G1

tetrahedron. From this we can compute the volume of the rhombic dodecahedron VRD to be

VRD =
4

3
+ 8

1

3

1

4

= 2.

(3.5)

See figure6 on the next page for a visual representation of this relationship.

3.4 Volume Of The Cube-octahedron

Consider the cube-octahedron constructed in section 2.5 on page 9. This shows that the 2B1 cube
can be decomposed into a cube-octahedron and 8 pyramids. Notice that these pyramids are the
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4 VOLUME OF A DODECAHEDRON

�

�

Y1

�

�

sin 60

�

�

sin 60

�

�

Y1

� �

B1 = 1

�

�

G1 =
√

2
�

Figure 6: The yellow rhombus of side Y1 = sin 60 has a short B1 = 1 diagonal and a long G1 =√
2 diagonal. This relation leads to two equivalent ways of constructing a rhombic dodecahedron

of side Y1.

same that occurred in section 3.1 on page 14 while computing the volume of the tetrahedron
—we computed this to be 1

6
. Thus, the volume of the cube-octahedron VCO is:

VCO = 8 − 8
1

6

=
20

3
.

(3.6)

4 Volume Of A Dodecahedron

Consider the model built in section 2.6 on page 9 in locating the vertices of the dodecahedron. A
dodecahedron can be viewed as the result of adding 6 roof structures to a cube —this construction
was known to Euclid. This decomposition of the dodecahedron can be used in computing its
volume.

From the model built in 2.6 on page 9, the cube has sides B2 = φ and therefore has volume
φ3. It only remains to compute the volume of the roof structures.

Each roof has a square base of side B2. The vertical faces are a pair of triangles and trapezium.
Consider one of these trapezoidal faces; the parallel sides have length B2 = φ and B1 = 1.

A trapezium can be viewed as the sum of a triangle and a parallelogram. Applying this
decomposition to the roof structure, it can be decomposed into a pyramid and a triangular cross-
section.
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4 VOLUME OF A DODECAHEDRON

Pyramid volume.

This pyramid has a rectangular base with sides B2 and B2 −B1. Applying identities of the golden
ratio, B2 − B1 = φ − 1 = 1

φ
, giving the area of the base Abase to be

Abase = φ
1

φ

= 1.

(4.1)

From the model constructed in 2.6 on page 9, the height of this pyramid is half of B3 − B2.
Since successive zome lengths are in the golden ratio,

B3 − B2

2
=

1

2
. (4.2)

The volume of this pyramid using (4.1) and (4.2) is therefore:

VP = 1 × 1

2

1

3

=
1

6
.

(4.3)

Next, consider the triangular cross-section. Its face is a triangle of side B2 whose height is the
same as the height of the pyramid computed above in equation (4.2). The area of the triangular
face is therefore φ

4
; the length of the cross-section is B1 = 1, giving its volume to be

φ

4
.

The dodecahedron as constructed is equal to the cube plus 6 roof structures —one on each face
of the cube. Thus, the volume of the dodecahedron is

VD = φ3 + 6(
φ

4
+

1

6
). (4.4)

Radius Of The Dodecahedron

Consider once again the cube of side B2 identified in the model built in2.6 on page 9. As shown
in 1 on page 3, the radius of this cube is Y2 = φ sin 60. We identified the vertices of this cube
of side B2 = φ by first placing the dodecahedron on any one of its edges. Therefore there is
nothing special about these 8 of the 20 vertices of the dodecahedron, and it follows by symmetry
that all vertices of the dodecahedron are a distance Y2 = φ sin 60 from its center. Notice that
drawing these 20 radii decomposes the interior of the dodecahedron into 12 congruent pyramids
that have a unit pentagon as the base and Y2 as the vertical sides. This construction in turn leads
to an alternative technique for computing the volume of the dodecahedron.
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5 VOLUME OF THE ICOSAHEDRON

5 Volume Of The Icosahedron

The icosahedron is the dual to the dodecahedron. This duality when applied to the technique
described in the previous section leads to a solution for computing the volume of the icosahedron.

5.1 Volume Of The Icosahedron Part I

We computed the volume of the dodecahedron by building a cube inside the dodecahedron. The
dual to this solution is to build an octahedron (dual to the cube) around the icosahedron. Observe
that when we take the dual the inside comes out.

View the model built in 2.7 on page 9 placed on one of the icosahedral edges and oriented so
the B2×B1 rectangles lie in the XY, YZ and ZX planes. Construct a right-triangle with the top B1

edge of the icosahedron as its hypotenuse in the ZX plane —in the zome model, this triangle has
g1 = 1√

2
green legs. Thus, this right-triangle has B1 = 1 as the hypotenuse and sides g1 = 1√

2
.

Repeat this construction on the bottom B1 edge. Finally, construct two more right-triangles each
with one of the B2 = φ sides as the hypotenuse. These right-triangles have sides g2 = φ√

2
. The

above constructs a square of side 1+φ
√

2
around the golden rectangle B2 ×B1 in the ZX plane —see

figure5.1 on the following page.
Repeat this construction for the B2 × B1 rectangles in the XY and YZ planes. The result is to

construct an octahedron of side

g1 + g2 =
1 + φ√

2

=
φ2

√
2
.

The volume of an octahedron of side
√

2 is 4
3

as shown in 3.2 on page 14. The volume of the

octahedron of side φ2
√

2
constructed above has its side scaled by φ2

2
and its volume by the scaling

rule is:

VO =
φ6

8

4

3

=
φ6

6
.

(5.1)

Next, we compute the volume of the pyramids we added to the icosahedron in constructing
the octahedron. View the model of the octahedron around the icosahedron with the B2 × B1

rectangles lying in the XY, YZ and ZX planes. Observe one of the g1, g1, B1 right-triangle in the
XY plane, and consider the obtuse pyramid that has this triangle as its base. The apex of this
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5 VOLUME OF THE ICOSAHEDRON5.1 Volume Of The Icosahedron Part I
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Figure 7: This figure shows a green square constructed around a blue golden rectangle.
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� �g2 � �g1 �

�

g2

�

�

g1

�

�

g2

�

�
g1

�

�

B1

�

� B1�

�

B1

Figure 8: This figure shows a face of the compound of the octahedron and icosahedron con-
structed in section 5.1 on page 18. The green triangle is the octahedral face, and the embedded
blue triangle is a face of the icosahedron. The blue triangle divides the sides of the green triangle
in the golden ratio.

pyramid is a vertex of the top edge of the icosahedron with Z coordinate φ

2
which is also the

height of this pyramid. This gives the volume of the obtuse pyramid to be:

VP =
1

2

1√
2

1√
2

1

3

φ

2

=
φ

24
.

(5.2)

There are two copies of this pyramid at each of the 6 vertices of the octahedron. Thus, the volume
of the icosahedron is:

VI =
φ6

6
− 12

φ

24

=
5φ2

6
(using (1.1))

(5.3)

5.2 Volume Of The Icosahedron Part II

The volume of the unit icosahedron can also be computed by packing it in a B2cube, and sub-
tracting the volume of the space between the cube and the icosahedron from the volume of the
cube.
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� �
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� �
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�
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�

�
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B1 = 1

�

�

Y1

�

�

sin 60

�

�

Y1

�

�

sin 60

	 	

1
2φ







φ

2

Figure 9: One face of the B2 cube with the contained B1 icosahedral edge. The icosahedral edge
is connected to the vertices of the surrounding B2 square using Y1 = sin 60 lines. The vertical
dotted lines show the height of the trapezoidal base; the horizontal dotted lines show the height
of the trapezoidal pyramid.

Place the B1 icosahedron on one of its edges as before. We will construct a B2 cube around
this icosahedron so that each face of the cube contains a corresponding edge of the icosahedron
—so for instance, the top edge of the icosahedron lies within the top face of this cube. Figure 9
shows one such face of the cube along with the contained icosahedral edge.

For each face of the B2 cube, join the vertices of the contained icosahedral edge to the vertices
of that face using Y1 = sin 60 lines as shown in figure 9. This constructs yellow triangular
pyramids with vertical side Y1 on 8 faces of the icosahedron, one per vertex of the cube. Consider
one such pyramid; its base is a face of the icosahedron and therefore a B1 equilateral triangle, and
its apex the corresponding vertex of the cube. The vertical sides of this pyramid are the yellow
lines shown in figure9 and have length Y1 = sin 60.

Observe further that for each face of the cube, there are two trapezoidal pyramids inside the
cube. These have the B1, Y1, B2, Y1 trapezium appearing as part of figure 9 as base. Consider
one of the trapezoidal pyramid with its base contained in the front face of the B2 cube —for now,
consider the trapezoidal pyramid whose base appears in the bottom half of figure9. The apex of
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5 VOLUME OF THE ICOSAHEDRON5.2 Volume Of The Icosahedron Part II

this pyramid then lies on the bottom face of the cube. The height of this pyramid is the height
of the Y1, Y1, B1 triangle with base B1 —shown in figure9 on the preceding page by horizontal
dotted lines. The height of this trapezoidal pyramid is therefore

B2 − B1

2
=

1

2φ
.

Now, observe that the volume of the B2 cube can be decomposed into the following disjoint
pieces:

• The volume of the unit icosahedron.

• the 8 triangular pyramids —one for each of the 8 vertices of the cube.

• 12 trapezoidal pyramids 2 for each of the 6 faces of the cube.

Volume of the triangular pyramid.

To calculate the volume of a triangular pyramid, we first compute its height. We do this by
applying the Pythogorian theorem to a right-triangle constructed by dropping a perpendicular
from the apex of this pyramid to its base —it passes through the centroid of the B1 equilateral
triangle. For a unit equilateral triangle, the centroid is at a distance 1√

3
from its vertices. The

right-triangle therefore has base 1√
3

and and hypotenuse Y1 =
√

3
2

. The height of the pyramid is
therefore

HP =

√

3

4
−

1

3

=

√

5

12
.

(5.4)

The area of the triangular base is √
3

4
.

The volume of the triangular pyramid using (5.4) is:

VP =
1

3

√
3

4

√

5

12

=

√
5

24
.
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6 VOLUME OF THE RHOMBIC TRIACONTAHEDRON

Volume of the trapezoidal pyramid.

We first compute the area of the B1, Y1, B2, Y1 trapezium that is the base of the trapezoidal pyra-
mid —see figure9 on page 21. The height of this trapezium —shown by the vertical dotted line
in figure9 on page 21—is φ

2
. The area of the base trapezium is therefore

A =
1

2

φ

2
(φ + 1)

=
φ3

4
.

(5.5)

As shown in figure9 on page 21, the height of the trapezoidal pyramid is 1
2φ

= φ−1

2
. Using (5.5)

the volume of the trapezoidal pyramid is therefore

VP =
1

3

1

2φ

φ3

4

=
φ2

24
.

Putting the pieces together, we sum the volumes of the 8 triangular pyramids and 12 trape-
zoidal pyramids to get

IR =

√
5

3
+

φ2

2

=
2φ − 1

3
+

φ2

2
.

(5.6)

The volume of the icosahedron is given by subtracting the residue shown in equation (5.6) from
φ3, the volume of the B2 cube. Writing φ3 = φ2 + φ, we get

VI = φ2 + φ −
2φ − 1

3
−

φ2

2

=
5φ2

6
.

6 Volume Of The Rhombic Triacontahedron

We showed in section 2.8 on page 10 that the vertices of the rhombic triacontahedron are the
vertices of dodecahedron and its dual icosahedron. From the model constructed in section 2.8, the
Rhombic triacontahedron consists of a B2 icosahedron and 20 R1 pyramids constructed on each
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6 VOLUME OF THE RHOMBIC TRIACONTAHEDRON

of the triangular icosahedral faces. These pyramids have a B2 equilateral triangle as their base
—the vertical sides of the pyramids are the R1 = sin 72 edges of the rhombic triacontahedron.

The volume of the rhombic triacontahedron can therefore be written as the sum of the volume
of the B2 icosahedron and 20 pyramids.

Volume of a Triangular Pyramid

By following the method used in section 5.2 on page 20, and applying identities of the golden
ratio, we compute the height of this pyramid to be

HP =

√

sin2 72 −
φ2

3

=

√

1 + φ2

4
−

φ2

3
(using (1.6))

=

√

(3 − φ2)√
12

=

√
3

6φ
(using (1.13))

VP =
φ

24
(using the height from the above equation).

Summing The Parts

The volume of the B1 = 1 icosahedron is 5φ2

6
see section 5.1 on page 18. The volume of the

B2 = φ icosahedron is obtained by the scaling rule to be:

φ3 5φ2

6
.

The volume of the 20 triangular pyramids is

5

6
φ.
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7 VOLUME OF THE ICOSIDODECAHEDRON

Using the identity φ4 + 1 = 3φ2, we get the volume to be:

VRT =
5

6
(φ5 + φ)

=
5φ

6
(φ4 + 1)

=
5φ3

2
(Using (1.13)).

7 Volume Of The Icosidodecahedron

We showed in section 2.9 on page 11 that the vertices of an icosidodecahedron were the edge mid-
points of a 2B1 icosahedron. From this, it follows that an icosidodecahedron can be constructed
by truncating a 2B1 icosahedron to its edge mid-points. Truncating the 2B1 icosahedron results
in removing 12 pyramids, each having a B1 pentagonal base and B1 vertical sides.

The volume of the B1 icosahedron is 5φ2

6
; —see section 5.1 on page 18—by applying the

scaling rule, the volume of the 2B1 icosahedron is 8 5φ2

6
.

Subtracting 12 copies of the pentagonal pyramid from the 2B1 icosahedron gives the volume
of the B1 icosidodecahedron.

7.1 Area of the Unit Pentagon

Consider a unit pentagon of side B1 = 1. Pick any vertex, and construct the B2 = φ diagonals
incident on that vertex —see figure 1 on page 4. This divides the area of the pentagon into 3

triangles, two of which are congruent —see figure1 on page 4.
Consider one of these 2 congruent triangles, and observe the B1 = 1 adjacent sides with an

included angle of 108◦. The area of this triangle is

1

2
sin 108 =

sin 72

2
.

This gives the area of the 2 congruent triangles to be sin 72.

Next, consider the triangle with sides {B2, B2, B1}, and observe the adjacent sides of length
B1, B2 with included angle 72◦. Its area is given by

1

2
φ sin 72.
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7 VOLUME OF THE ICOSIDODECAHEDRON7.2 Volume of the Pentagonal Pyramid

Summing the parts, the area of the unit pentagon is

A = sin 72(1 +
φ

2
)

=
(1 + φ)

3
2

4
(Using (1.6)).

7.2 Volume of the Pentagonal Pyramid

Consider the center of the pentagon, and observe the triangle formed by connecting it to 2 ad-
jacent vertices of the pentagon. Let r be the radius of the unit pentagon. The central angle is
360
5

= 72◦, and the base angles of this isosceles triangle is sin 54. By the sine rule, we have

r

sin 54
=

1

sin 72

r =
sin 54

sin 72

=
1

2 sin 36
.

Dropping a perpendicular from the apex of the pyramid to its base, and applying the Pythogorian
theorem as in section 5.2 on page 20, the height of this pyramid is

HP =

√

(1 −
1

4sin236
)

=

√

4sin236 − 1

4sin236
,

=

√

(3 − 4 cos2 36)

2 sin 36
(Using (1.15)).

Rewriting sin 36 and cos 36 in terms of φ, using equations ( (1.4) and (1.15)), and using the
identity

√

(3 − φ2) = 1
φ

), we get the height to be

HP =

√

(3 − φ2)

2

2φ
√

(1 + φ2)

=
1

√

(1 + φ2)
.

(7.1)
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Polyhedron Side Vol Alt V

Dodecahedron 1 φ3 + 6(φ

4
+ 1

6
) 2 + 7φ

2

Icosahedron 1 φ3 − 12 φ

24
− 8

√
5

24

φ6

6
− 12 φ

24
5φ2

6

Tetrahedron
√

2 13

3
1/3 unit cube volume

Octahedron
√

2 13 + 13

3
4 times the tetrahedron volume

Rhombic Dodecahedron sin 60 13 + 613

6
Twice unit cube

Cube-octahedron
√

2 20
3

Chamfered cube

RT1 sin 72 5φ2

6
(φ3 +

√
2 − φ) 5φ3

2

Table 2: Volumes of regular polyhedra. The volume for each polyhedron is expressed in forms
that make the decomposition obvious.

The volume of the pentagonal pyramid is

VP =
1

3

(1 + φ)
3
2

4

1
√

(1 + φ2)

=
(1 + φ2)

12
.

Summing the parts.

The The volume of icosidodecahedron is given by

VI32 =
5

6
φ28 − (1 + φ2)

=
17

3
φ2 − 1.

8 Conclusion

To conclude, here is a table listing the various formulae derived in this paper.
Finally, here are the 5 platonic solids drawn using package Metapost.
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8 CONCLUSION

Figure 10: The Tetrahedron has 4 vertices and 4 faces, and is dual to itself.

Figure 11: The cube has 8 vertices and 6 faces.
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8 CONCLUSION

Figure 12: The octahedron has 6 vertices, 8 faces, and is dual to the cube.

Figure 13: The dodecahedron has 12 faces and 20 vertices.
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Figure 14: The icosahedron has 12 vertices, 20 faces, and is dual to the dodecahedron.
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