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Outline

Identities of the golden ratio.

Locating coordinates of regular polyhedra.

Using the cube to compute volumes.

Volume of the dodecahedron.

Volume of the icosahedron.
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The Golden Ratio
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Basic Facts

Dodecahedral/Icosahedral symmetry.

The golden ratio and its scaling property.

The scaling rule for areas and volumes.

The Pythogorian theorem.

Formula for pyramid volume.
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Basic Units

Color Significance 1 2

Blue Unity 1 φ

Red Radius of I1 sin 72 φ sin 72

Yellow Radius of C1 sin 60 φ sin 60

Green Face diagonal of C1

√
2 φ

√
2
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Powers Of The Golden Ratio

1 + φ = φ2

φ + φ2 = φ3

... =
...

φn−2 + φn−1 = φn

Form a Fibonacci sequence.
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Golden Rhombus
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Scaled Golden Rhombus
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Useful Identities

2 cos 36 = φ

Golden ratio and pentagon diagonal.
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Useful Identities

1 + φ2 = 4R1
2

Blue-red triangle.
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Useful Identities

cos 2 ∗ 18 = 2 cos2 18 − 1

= 2 sin2 72 − 1

Combining these gives

sin2 72 =
1 + φ2

4
= R2

1
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Useful Identities

1 + φ4 = 3φ2

Blue-yellow triangle.
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Useful Identities

sin 36 =

√

1 + φ2

2φ
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Locating Vertices Of Regular
Polyhedra
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Cube

{(±1

2
,±1

2
,±1

2
)}.
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Tetrahedron
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Self dual.
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Octahedron

{(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.

Dual To Cube

Polyhedral Volumes – p.17/43

http://www.cs.cornell.edu/home/raman/publications/polyhedra/paper.pdf


Rhombic Dodecahedron

(±1

2
,±1

2
,±1

2
).

Vertices of cube and octahedron.

{(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.
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Cube-Octahedron

{(0,±1,±1), (±1, 0,±1), (±1,±1, 0)}.

Dual to rhombic dodecahedron.

Faces of cube and octahedron.
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Dodecahedron

Cube vertices

(±φ

2
,±φ

2
,±φ

2
)

Coordinate planes.

(±φ2

2
,±1

2
, 0) (±1

2
, 0,±φ2

2
) (0,±φ2

2
,±1

2
)
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Icosahedron

Dual to dodecahedron.

(±φ
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Using The Cube To Compute
Volumes
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Volume Of The Tetrahedron

Constructing right-angle pyramids on tetrahedral
faces forms a cube.

1

2

1

3
=

1

6
.

VT = 13 − 4

6

=
1

3
.
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Volume Of The Octahedron

Place 4 tetrahedra on 4 octahedral faces to form
a 2x tetrahedron.
Octahedron is 4 times the tetrahedron.

VO =
8

3
− 4

1

3

=
4

3
.
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Volume Of The Rhombic Dodecahedron

Connect the center of the cube to its vertices.

This forms 6 pyramids inside the cube.

Reflect these with respect to the cube faces
to create a rhombic dodecahedron.

Rhombic dodecahedron is twice the cube.
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Volume Of The Cube-octahedron

Subtracting 8 right-angle pyramids from a cube
gives a cube-octahedron.

VCO = 8 − 8
1

6

=
20

3
.
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Volume Of The Dodecahedron
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Cube And The Dodecahedron

Dodecahedron contains a golden cube.

8 of the 20 vertices determine a cube.

Cube edges are dodecahedron face
diagonals.

Diagonal of a pentagon is in the golden ratio
to its side.
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Constructing Dodecahedron From A Cube

Consider again the golden cube.

Construct roof structures on each cube face.

Unit dodecahedron around a golden cube.
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Summing The Parts

Volume of the golden cube is φ3.

Consider the roof structure.

Decomposes into a pyramid and a triangular
cross-section.

Polyhedral Volumes – p.30/43

http://www.cs.cornell.edu/home/raman/publications/polyhedra/paper.pdf


Volume Of Pyramid

Pyramid has rectangular base.

Rectangle of side φ × 1

φ
.

Height of pyramid is 1

2

Volume is 1

6
.
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Triangular Cross-Section

Cross-section has length 1.

Triangular face with base φ,

And height 1

2
.

Volume is φ

4
.
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Dodecahedron Volume

φ3 + 6(
φ

4
+

1

6
)

Polyhedral Volumes – p.33/43

http://www.cs.cornell.edu/home/raman/publications/polyhedra/paper.pdf


Volume Of The Icosahedron
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Volume Of The Icosahedron

Icosahedron is dual to dodecahedron.

Octahedron is dual to the cube.

Golden cube inside dodecahedron computes
its volume.

Octahedron outside icosahedron gives volume.
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Constructing The Octahedron

Squares in XY , Y Z, and ZX planes.

Consider a pair of opposite icosahedral
edges,

And construct right-triangles in their plane,

With the icosahedral edge as hypotenuse.

These have legs of length 1√
2
.

Distance between opposite icosahedral
edges is φ.

Right-triangles with these lines as
hypotenuse complete the square.

Square of side φ+1√
2

= φ2

√
2

in the XY plane.
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Square In XY Plane
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Figure 1: Green square around a blue golden

rectangle.
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Square In XY Plane

�

��

� �

��

��

��

��

��

�

� �

	 	






�
�

� �




�

Figure 1: Green square around a blue golden

rectangle.
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Complete The Octahedron

Construct similar squares in the Y Z and ZX

planes.

Constructs an octahedron of side φ2

√
2
.

Volume of octahedron of side
√

2 is 4

3
.

Scale this result by φ

2
.

Volume is φ6

6
.
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Computing The Residue

Icosahedron embedded in this octahedron.

Icosahedral volume found by subtracting
residue from φ6

6
.

Residue consists of 12 pyramids, 2 per
octahedral vertex.
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Pyramid Volume

Observe pyramid with right-triangle base in
XY plane.

Triangular base has area 1

4
.

Pyramid has height φ

2
.

Pyramid Volume is φ

24
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Icosahedral Volume

φ6

6
− φ

2
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Conclusion
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