Polyhedral Volumes *Visual Techniques*

T. V. Raman & M. S. Krishnamoorthy

Identities of the golden ratio.

Identities of the golden ratio.
Locating coordinates of regular polyhedra.

Identities of the golden ratio.
Locating coordinates of regular polyhedra.
Using the cube to compute volumes.

- Identities of the golden ratio.
- Locating coordinates of regular polyhedra.
- Using the cube to compute volumes.
- Volume of the dodecahedron.

- Identities of the golden ratio.
- Locating coordinates of regular polyhedra.
- Using the cube to compute volumes.
- Volume of the dodecahedron.
- Volume of the icosahedron.

The Golden Ratio

Dodecahedral/Icosahedral symmetry.

Dodecahedral/Icosahedral symmetry.
 <u>The golden ratio and its scaling property.</u>

Dodecahedral/Icosahedral symmetry.
The golden ratio and its *scaling* property.
The *scaling* rule for areas and volumes.

Dodecahedral/Icosahedral symmetry.
The golden ratio and its *scaling* property.
The *scaling* rule for areas and volumes.
The Pythogorian theorem.

- Dodecahedral/Icosahedral symmetry.
- The golden ratio and its scaling property.
- The scaling rule for areas and volumes.
- The Pythogorian theorem.
- Formula for pyramid volume.

Basic Units

Color	Significance	1	2
Blue	Unity	1	ϕ
Red	Radius of I_1	$\sin 72$	$\phi \sin 72$
Yellow	Radius of C_1	$\sin 60$	$\phi \sin 60$
Green	Face diagonal of C_1	$\sqrt{2}$	$\phi\sqrt{2}$

Powers Of The Golden Ratio

$$1 + \phi = \phi^2$$
$$\phi + \phi^2 = \phi^3$$

$$i = i$$

$$\phi^{n-2} + \phi^{n-1} = \phi^n$$

Powers Of The Golden Ratio

$$1 + \phi = \phi^2$$
$$\phi + \phi^2 = \phi^3$$

$$\mathbf{i} = \mathbf{i}$$

$$\phi^{n-2} + \phi^{n-1} = \phi^n$$

Form a Fibonacci sequence.

Golden Rhombus

Golden Rhombus

Golden Rhombus

Scaled Golden Rhombus

Scaled Golden Rhombus

Scaled Golden Rhombus

$$2\cos 36 = \phi$$

$$2\cos 36 = \phi$$

Golden ratio and pentagon diagonal.

$$1 + \phi^2 = 4R_1^2$$

$$1 + \phi^2 = 4R_1^2$$

Blue-red triangle.

$$\cos 2 * 18 = 2\cos^2 18 - 1$$
$$= 2\sin^2 72 - 1$$

Combining these gives

$$\sin^2 72 = \frac{1+\phi^2}{4}$$
$$= R_1^2$$

$$1 + \phi^4 = 3\phi^2$$

$$1 + \phi^4 = 3\phi^2$$

Blue-yellow triangle.

$$\sin 36 = \frac{\sqrt{1+\phi^2}}{2\phi}$$

Locating Vertices Of Regular Polyhedra

Cube

Tetrahedron

$\{(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\}.$

Rhombic Dodecahedron

$$(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}).$$

Vertices of cube and octahedron.

$\{(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\}.$

$\{(0,\pm 1,\pm 1), (\pm 1,0,\pm 1), (\pm 1,\pm 1,0)\}.$

Dual to rhombic dodecahedron.

Faces of cube and octahedron.

Cube vertices

$$(\pm \frac{\phi}{2},\pm \frac{\phi}{2},\pm \frac{\phi}{2})$$

Coordinate planes.

$$(\pm \frac{\phi^2}{2}, \pm \frac{1}{2}, 0) \quad (\pm \frac{1}{2}, 0, \pm \frac{\phi^2}{2}) \quad (0, \pm \frac{\phi^2}{2}, \pm \frac{1}{2})$$

Icosahedron

Dual to dodecahedron.

Using The Cube To Compute Volumes

Volume Of The Tetrahedron

Constructing right-angle pyramids on tetrahedral faces forms a cube.

 $\frac{11}{23} = \frac{1}{6}.$

$$V_T = 1^3 - \frac{4}{6}$$

= $\frac{1}{3}$.

Volume Of The Octahedron

Place 4 tetrahedra on 4 octahedral faces to form a 2x tetrahedron.

Octahedron is 4 times the tetrahedron.

$$V_O = \frac{8}{3} - 4\frac{1}{3} = \frac{4}{3}.$$

Volume Of The Rhombic Dodecahedro

Connect the center of the cube to its vertices.

This forms 6 pyramids inside the cube.

Volume Of The Cube-octahedron

Subtracting 8 right-angle pyramids from a cube gives a cube-octahedron.

$$V_{\rm CO} = 8 - 8\frac{1}{6}$$

= $\frac{20}{3}$.

Volume Of The Dodecahedron

Cube And The Dodecahedron

Dodecahedron contains a golden cube.

- 8 of the 20 vertices determine a cube.
- Cube edges are dodecahedron face diagonals.

Constructing Dodecahedron From A C

Consider again the golden cube.

Construct roof structures on each cube face.

Unit dodecahedron around a golden cube.

Summing The Parts

Volume of the golden cube is φ³.
 Consider the *roof* structure.

Volume Of Pyramid

Pyramid has rectangular base.
 Rectangle of side φ × ¹/_φ.

Volume is
$$\frac{1}{6}$$
.

Triangular Cross-Section

Cross-section has length 1.
 Triangular face with base φ,

Dodecahedron Volume

$$\phi^3 + 6(\frac{\phi}{4} + \frac{1}{6})$$

Volume Of The Icosahedron

Volume Of The Icosahedron

Icosahedron is dual to dodecahedron.

Octahedron is dual to the cube.

Octahedron outside icosahedron gives volume.

Constructing The Octahedron

Squares in XY, YZ, and ZX planes.

- Consider a pair of opposite icosahedral edges,
- And construct right-triangles in their plane,

Square In XY **Plane**

Figure 1: Green square around a blue golden rectangle.

Square In XY **Plane**

Figure 1: Green square around a blue golden rectangle.

Complete The Octahedron

- Construct similar squares in the YZ and ZX planes.
- Constructs an octahedron of side $\frac{\phi^2}{\sqrt{2}}$.

Volume is
$$\frac{\phi^6}{6}$$
.

Computing The Residue

Icosahedron embedded in this octahedron.
 Icosahedral volume found by subtracting residue from \$\frac{\phi^6}{6}\$.

Pyramid Volume

 Observe pyramid with right-triangle base in XY plane.

• Triangular base has area $\frac{1}{4}$.

Icosahedral Volume

$\frac{\phi^6}{6} - \frac{\phi}{2}$

Conclusion