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Abstract

This essay outlines some of my experiences as a mathematitia
cannot see. Note that | transitioned to being a Computem8sieduring
Graduate School. However | strongly believe in the edict¢®a mathe-
matician, always a mathematician!” —my training in math&osacontinues
to influence the way | think.

I've been unable to see since the agéffwhich means that I've studied
and practiced mathematics predominantly in an eyes-freieomment. This
essay is my first conscious attempt at asking the questiorat\ighnvolved
in doing mathematics when you cannot see?” | hope that sortie @xpe-
riences outlined here will prove insightful to mathematits at large. At its
heart, mathematics is about understanding the underlyingtsre inherent
in a given area of interest —and where no such structuresexigo define
the minimal structure that is needed to make forward pragres

The general perception that mathematics might be hard to do eyes-
free environment probably traces itself to the common viemathematics
as a field where one performs copious calculations on pafleillustrate
some of the habits and abilities one evolves over time to ensgte for the
lack of ready access &rratch memoryrovided by pencil and paper when
working in an eyes-free environment. In this essay, | hopgetmonstrate
that mathematics in its essence is something far bigger. ddygbbigger
than “calculations on paper”, not being able to see rarebvér proves an
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obstacle when it comes to doing mathematics; the challeageseeds to
overcome are primarily centered around gaining access tioametical ma-
terial, and communicating ones insights with fellow mathénians. Thus,
a large portion of this essay focuses on solutions to thdestggs inherent
in mathematical communication.

1 Creativity

The phases involved in the creative process were first desthy German phys-
iologist Herman Helmholtz in the late nineteenth centurye iHentified three
stages of creativity:

e saturation
e incubationand
e illumination

—seePromoting Creativity These three stages have since been augmented with
the additional step oferificationby the scientific community.

When | started working on this essay, | found it useful to aslatvmpact if
any my not being able to see had had on each of these stag&s thitcreative
process when studying or doing mathematics. This intradycection briefly
summarizes my answers to this question —the remainingosecpresent a de
tailed analysis based on my experience of working on spemifiblems.

Saturation Atthis stage, one focuses on gaining a good grasp of thegmmobbn-
text. Given that a lot of mathematical literature is onlyitaale in print, this
stage can be a challenge, especially when it comes to highelrmathe-
matics. But to do higher-level mathematics, one first needs telementary
mathematics, and | believe that it is even more importantio fhe right
kind of help when one is beginning to learn. | believe | gaiaesignifi-
cant advantage here by virtue of having an elder brother wdmanhighly
motivated teacher. The challenge of gaining access to higlel mathe-
matics might appear to be the more complex of the two; howelelieve
that proper access at the introductory level is far morécatitsince good
access at this stage ensures that a student with the ngcessttiematical
aptitude remains within the field to go on and solve the chghs that lie
beyond.
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Incubation Having absorbed the relevant material, this stage invatyasg dif-
ferent approaches to making forward progress. In my expegienot being
able to see has little or or no negative impact at this stagégat it might
actually be an advantage since one has fewer distractions.

lllumination Not being able to see should not have any negatives at tlgs.sta

In practice, | have often found that | fall into the holefafseillumination
i.e.,concluding that | have solved the problem when | have noy fddine
so. This can often be attributed to failures within 8surationstepe.g.,
missing a key portion of the problem statement, or pursumgnaorrect
approach that has been tried and dismissed by others in #te pa the
world of mathematics goes digital, | believe that tools likeogle Scholar
will serve to level the playing field in this regard.

Verification The verification step is closely connected with being ablelably
communicate mathematical ideas with ones peers. At thyesies impor-
tant to be able to communicate with other mathematiciansaditonally,
this meant writing with a piece of chalk. The move to elecitaommu-
nication, and the invention of mathematical notation lik& Tomes to the
rescue here. ThegeX notationscales—TeX keeps writing simple math sim-
ple, while being capable of encoding complex material. Ksao EX, |
can communicate mathematical ideas via email —most matiaares can
read X math —I can also produce beautifully typeset mathematicsrw
| have something more significant to convey.

2 First Experience —A Mental Calendar

| was 15 and couldn’t see any more; | realized | couldn’t lobvlaa
print calendar to find out the day of the week. | also had timengn
hands. ..

| decided that an interesting problem to solve would be torégaut how to
tell the day of the week given the date. | had always been gatbhchambers, and
at the time | was 15 years old and felt | knew enough mathes&ibe able to
work out the solution. What’s more, the possibility of bemgle to tell the day
given any date seemed far more useful than being able to tdbk arint calendar
for any given year.
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Saturation

In this case, grasping the problem at hand did not requirensite reading —a
lucky coincidence since | had no means of reading any matbeal might have
needed. The facts needed for gaining insight into the prolere ready to hand.
After all, even though | couldn’t look at a print calendarjways knew what day
of the week it wagsoday—moreover, by counting either backwards or forwards,
| could also figure out the day of the week fogarbydates.

Once | started down this path, the answer to the first quessked myself

What is the reason for thest of every month not being the same day
of the week?

became readily apparent —given two dates, the change inayhefdthe week
is given by taking the number of intervening days, and olnagithe remainder
moduld’.As an example, January 1 1980 (the year | did this) was a ayesd
could conjecture that February 1, 1980 would be a Friday, readily confirm
that my understanding was correct because | could checlkliog/fng facts:

e January 1, 1980 was a Tuesday.
e February 1, 1980 was a Friday.
e January has1 days, and1%7 = 3.

Thus, thesaturationphase did not present an obstacle; what's more, being
forced to count forward/backwards while understandingptitudlem meant | had
a leg up with entering theacubationphase.

Incubation

The incubation phase did not last very long in this instanGaven that | had
already started down the path of using modularithmetic, | already had the
essence of the algorithm at my fingertips —given a date, déotlmving:

e Compute the number of intervening day$rom today.
e Computed%o.

e Use this offset fromodayto obtain the answer.



lllumination

Though the above steps do give the answer, computirgthe number of inter-
vening days between January 1 and any given date —is cunmbersdherefore
spent some time computing the day of the weekdomnvenientdatese.g.,Jan-
uary 1. As | did this, | found computing the number of intervendays between
January 1 and any date in the same year cumbersome. But blttadrsufficient
insight into the problem to realize that | could apply thevwas technique to
compute the day for the first of each month. So most of the iattob phase was
spent getting better at modufoarithmetic, and deciding what bits | would need
to remember as opposed to computing on the fly.

| eventually arrived at the following:

e Avyear has365 days.365%7 = 1, and so January 1 moves by one day each
year (and by for a leap year.

e Compute a list ofl 2 numbers that each give the remaindét7 at the be-
ginning of each month.

e Compute the day of the week for January 1 at the turn of eactuigeto
make calculations easy.

So here is what | still use to look at the calendar. Let Sundag.bThe
table of offsets for thd2 months (assuming February ha$ days) is obtained
by computingd%? for each month wherd is the number of intervening days
between the first of the month and January 1. Thus, the offselanuary i9.
The offset for monthn is given by

offset,, = offset,, ;1 + (D(m — 1)%7)

| Jan| Feb| Mar | Apr | May | Jun| Jul | Aug | Sep| Oct| Nov | Dec ||
31| 28| 31| 30| 31 |30 (31| 31 ]30|31] 30| 31
0 3 3 6 1 4 6 2 5 0 3 5

Given adatdm, d,y), computenv = M7 + d; + y7, where:

e m; is the offset for the month obtained by looking up the montthatable
of offsets.

° d7 = d%?.



e Letyy =y — 1900 theny; = (y + y/4)%7. The offset for the year 1900
is 0 since January 1 that year was a Monday —the offsets atithef the
century cycle througffe, 4, 2, 0).

Notice that the above computation adds in the extra day &y Years for all
dates. Since the extra day is in fact added in at the end ouiBghrthew com-

puted above needs to be decremented lhen working with dates in January
and February of a leap year.

Verification

Verification in this instance turned into a fun party trick v#is out that most
people remember the day of the week for significant days iin lifes and what'’s
more, always ask you to verify their special day. They are glsck to tell you
when you're wrong, which means you get an opportunity to lvettify the algo-
rithm, as well as checking your own ability to apply it sucsfedy.

3 Solving The Rubik’s Cube

| learnt Braille when I was 17. The Rubik’s Cube came to Indauad
the same time, and marking a Rubik’s Cube with Braille dots tha
first useful thing I did with my newly acquired ability.

Saturation

| first heard of the Rubik’'s Cube on the BBC’s Science In Actieigrowing up,
the BBC World Service was something | listened to all the tintetook a few
more months before the cube arrived in India —sometime ily é882 which is
also when | learnt Braille.

My initial exposure to the cube came via observing everyooerad struggling
to solve it and failing —this in itself was sufficiently mogting to want to solve
it. | started by placing my finger on a given facelet of an urkedrcube and
observing how it moved as | turned the various faces. At tiaiges not being able
to see the colors on the cube probably saved me from gettstgguconfused as
everyone else around me. It also gave me the somewhat faisession that this
wasn’t going to be very difficult —a lucky misconception —hase it also meant
that | did not get discouraged early on.



As | began to discover patterns of movement on the cube, thelineed to
remember some of these patterns so that | could conneatatifféhings | discov-
ered on the cube. | also discovered that it was important td the cube in a
fixed orientation —otherwise | found myself getting very issed. | soon started
referring to the bottom face ds the front face ag and the left face a3. When-
ever | discovered a sequence of face turns that | could gedalycapply to move a
facelet from a given position to another without disturbitsgneighbours, | started
associating a string of digits to that sequence. Noticeabat notation this was in
fact incomplete —it fails to record the direction (clockeigs counter-clockwise)
that a face is being turned. But it was a key step in the sabmratage as | came
to grips with the puzzle.

Still working with an unmarked cube, | also discovered tHeedence between
edge cubelets (pieces that have two colors on them) vs coubetets (pieces that
have three colors). | also realized that the face centensatichove at all, and were
responsible for determining the color of a face. Since | wasglthis by carefully
holding a fingertip on a chosen piece, | also arrived at theutisesight that it was
important to solve the cube a layer at a time —aotla face at a time.

Incubation

The incubation stage in this instance lasted almost a wexk fnemory. Plac-
ing a fingertip on a piece and observing its motion was a gocahshef gaining
insight into the puzzle. But as | made progress in that doacthings also got
more and more confusing since | was now trying to do more cergtieps. After
doing complex hand contortions where | tried to track midtipieces by plac-
ing different fingers on the pieces to track while attemptimgurn cube faces, |
realized that | needed tactile markers on the cube faces ke m&her progress.

At this point, my brother marked a Rubik’s Cube with Brailteekers. We left
the white face blank, and stuck small squares of relativetktpolythene marked
with different Braille symbols on the 5 remaining faces.

| now got to experience first-hand why everyone else arounevaseso con-
fused by the cube. But my earlier explorations during therséibn face had
helped me build up an intuitive feel for how things worked eNkess to say, | was
able to correct many of my prior misconceptions. | also fixpdmy primitive
notational system for remembering commonly occurring saqas —I attached
+ to the digits to denote the direction in which a face was b&inged.

At this point, | believe | had achieved parity with respectattempting to
solve the cubée., not being able to see did not matter any more. From here on,
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my arriving at the solution went through the same sequenedfait, frustration
and eventual success that everyone goes through when otadrwith the cube.

lllumination

A week after marking the cube with Braille dots, | had an eméd solution that
| believed worked. Given a randomly mixed cube, | went abbloyi

Start with the blank (white) face —identified by its center r+top.

Move the edge cubelets of the top layer into position.

Move the corner cubelets of this layer into position.

Move the edge cubelets that made up the second layer intbguosi

Move the corner cubelets on the bottom layer into their slots

Move the edge cubelets in the bottom layer into position.

Orient the edge and corner cubelets correctly on the botger.

Verification

After claiming to have solved the cube, and reliably solviing few times, | got
my first rude surprise —someone mixed it up and | found | redeheonfiguration
for which | had not worked out a reliable sequence of movesusTn this case
verification was iterative.

The problem was that | had missed the possibility that oneptace a pair
of cubes in the bottom layer in their home position and salNédthe other pair
swapped. By this time, | was sufficiently well-versed in teergts of the cube to
derive the sequence of moves needed to dig myself out of ¢iés h

After finally learning to solve the cube, | spent the subsetjoenths deriving
different shortcuts that allowed me to move multiple pieicg#s position in par-
allel —eventually I could solve the cube on average in urideseconds| even
relaxed one of my early constraints —having to hold the cube fixed orienta-
tion —when | solved the cube one-handed. Solving a Braillzecane-handed is
an interesting challenge because | was using the same hanthtteel the Braille
markers and turn the cube faces. Doing this requires pHiysa&nting the cube
in your hand so that you can turn a given face; this means thatiyental model
of the cube needs to account at each stage for a completelyergted cube.
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Insights

Discovering the algorithm for computing the day given a degavell as solving

the cube did not require doing mathematics in the traditisease. Neither re-
guired me to access significant amounts of existing matheahéterature. When

| had arrived at the solution, communicating the result was aasy. Thus, the
two steps where not being able to see could potentially gibieinvay were in fact

easy. At the same time, not being able to see helped me fodire @moblem to a

greater extent than | otherwise might have; additionaligjght not have been as
motivated if | had been able to see.

4 Devising An Efficient Braille Notation For Math

| spent a year attempting to chase down the Nemeth Braille éad
writing Math. | finally gave up and created my own in the sumwier
1983. ..

Saturation

During my first year of school after learning Bralille, | triatvain to chase down
the Nemeth code for writing math in Braille. This was 1982ndih,i.e., before
the global availability of email. After mailing out many tets with nothing to
show for it, | spent the summer of 1983 designing a math radtiat | could use
for taking class notes in Braille. Here are some of the reguénts that went into
this design:

Succinct The notation had to be sufficiently succinct to enable me titevat
classroom speeds usingyacket slate

Extensible The system had to be extensible to enable me to invent notatio
the flyas | encountered new concepts and their accompanying maticain
notation in class.

Speed The notation had to be sufficiently concise to enable somklkmenyself
who had learnt Braille late in life to read fast. This meanhimizing the
number of dots it took to write —something that meshed wethwhe goal
of succinctness —fewer dots are both quicker to read an@writ
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Incubation

| experienced first-hand what it meant to study mathematitisowt access to a
good reading/writing system during the 1982 academic ykearas in thellth
grade, and relied exclusively on my brother to read me tebol gave written
exams with awvriter —a student who would read me the question and write down
the answer as | dictated. This necessarily forced me toipeasblving problems
a step at a time and dictating each step to the writer.

Solving problems in this mode is distinct from solving matblgems men-
tally. Notice that the presence of the writer meant that Irdide access tecratch
memory of sorts. Dictating each step to the writer, havirrgatd back to confirm
that it had been written correctly, and proceeding to the seep meant that |
needed to usmentalcalculation only for individual steps. This actually recpd
a fair bit of practice since it was always tempting to try tévegroblems in cal-
culus or trigonometry end-to-end and then dictate the gsluin practice this is
both error-prone and unnecessary —especially given an eyatam that focuses
on the student’s ability to finish a given number of problemthie allotted time.

lllumination

The abilities | developed during the academic year 19823 K#8ved me well
on two counts. The ability to break down a problem and worktlgh it sys-

tematically is more broadly useful than when taking timedrag with a writer.

Secondly, my experience that year helped me implicitly ustd@&d the design re-
guirements enumerated earlier for my ideal Braille notafr mathematics. |
spent the summer of 1983 designing such a system and continuse the result
throughout my student career.

The Braille notation | developed had the following features

Phonetic To meet the succinctness requirement, | first created mgiggtbnetic
shorthand in Braille. A Braille cell has dots arranged in & x 2 matrix
to give 63 distinct symbols. The shorthand | devised dropped all vewel
and used different symbols for commonly occurring syllableurther, the
position of a symbol within a word changed the syllable thatanoted.
As an example, the Braille character obtained by using tleedots in the
bottom row of the3 x 2 matrix denoted the syllablpr at the front of a
word; it denoted the syllabley at the end of a word. | therefore wrote the
word pricy by repeating this character. Writing the wgudcy in standard
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Braille would take5 characters comprised o4,4,2,2,5) = 17 dots. In
comparison my shorthand could encode the same word 2vitharacters
that used2,2) = 4 dots.

Math Escapes Braille is essentially a linear writing system —later, | caio ap-
preciate that computer-based writing systems |iRé dre also linear. To en-
code two-dimensional math notation, | assigned partiddtarlle symbols
to denote the start of subscripts or superscripts —I |laterecép recognize
these as escape sequences when | learnt computer sciesed.garenthe-
ses to group sub-expressions. | used a special symbol tegedenglish
letters to denote that the symbol was the Greek equivalersta-eamputer
scientist, | now recognize this as placing a symbol in a newespace.

Verification

| started using the resulting Braille codes in class durmegacademic year 1983—
84 and to my surprise it worked very well. | had bdanghtto write with my
right-hand when | was very young. | suspect that if left to mynodevices, |
would have written with my left-hand —since | could see witi left eye. When

| learnt Braille, this too turned into an advantage —I sthreading Braille with
my left hand. The ability to write right-handed while beingl@to read with my
left-hand meant that | could read and write in parallel —stimmg that proved
quite useful when doing mathematics.

Both the Braille writing system | devised —as well as the dévand conquer
strategy for problem solving during exarssaledwell. | invented new symbols
as | learnt more mathematics and encountered newer nathtibthe underlying
notational system never changed. When | encountered neseptsand associ-
ated new notation in class, | always asked what the visuaittioot was, and then
invented a Braille notation that best matched. This alsoantdasy for me to
remember the visual notation (which | would need to know wHeating my
exams). As an example, when | first encountered group théoeynotation for
group(G, +) was described to me in class as

G, + enclosed in angle brackets

| automatically chose the Braille symbols | had previousgdifor< and> as a
new pair of delimiters. For the record, | always sat in froithe class and insisted
that every instructor spoke as they wrote on the blackbodutther, | was never
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shy if | heard the squeak of a chalk without an accompanyiteyarice from the
person at the board.

Similarly, the strategy of solving written problems a stémdime and us-
ing the previously written step to provide scratch memospalcaled from high-
school calculus to college-level mathematics. As an exampbook a class on
Linear Programming in college and still have unpleasant ore¥s of having to
solvetransportationproblems using the Vogel's Approximation Method in timed
exams. These experiences gave me two key insights that axexdane well:

Specific mathematical techniqueg. differentiation, integration or the Sim-
plex method are algorithms.

To truly appreciate an algorithm and understand how it waske needs to
be able taunit by hand on a representative set of examples.

In mathematics, this translates to being able to diffeed@tor integrate a
given expression.

The latter requires a set sémi-mechanicateps and this is where one uses
aids such ascratchmemory provided by pencil and paper —something for
which | needed to compensate.

However, a true understanding of the underlying algoriterfar more im-
portant than any specific technique that one might deviseuioning the
algorithm on specific instances.

5 Learning To Program
Asked to program a game in CS 101, | expressed the game asa recu
rence equation and solved it —it made for a very short progtaan
alwayswon the game. .

Saturation

| was asked to program the following two-person nimm-typ@egéor a final class
assignment. Here are the rules:

The game starts with sticks on the table, with each player taking turns to
pick upk sticks.
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e The first player can pick up at most— 1 sticks.

e Assume that a player pickssticks at a given turn. Then his opponent can
pick up at mos2k sticks.

e The player who picks up the last set of sticks wins.

We had been taught the technique of searching through ga®ee im class
and were expected to use this to complete the assignmentoVme some addi-
tional context, CS 101 students at IIT were assigned limatadunts of computer
time —typically 60 minutes slots between the hours of 10pich Bam. | used to
program by taking along a student to read the display for me.

Incubation

| was highly motivated to devise a solution that would notuiegime to go multi-
ple times in the middle of the night to the computer room tolangent a solution.
| like sleeping early and well, and finding willing voluntsan the middle of the
night is not easy. The problem description was simple, arideing able to see
was not a shortcoming at the saturation stage. It turnedmbeta significant
advantage during the incubation phase. While the rest of e®yspbegged and
borrowed additional computer time to implement a game-&sed solution, |
spent my time thinking about the problem in the relative aondéf my dorm
room.

Analyzing the game, | simulated it for small valuesrofand discovered the
following:

e The game is meaningless far= 1.
e If n = 2 the first player loses.
e If n = 3, first player loses.

e If you play two successive gamés, n;), where the first player is guar-
anteed to lose each game, then the first player can be forcledddor
n=mnj+ny.

As | jotted down the numberd, 2, 3,2 4+ 3 = 5), and observed above facts, |
spotted the Fibonacci sequence. | initially conjectured the first player would
always lose ifn was a Fibonacci number. This then indicated a possible wgnni
strategy; ifn is a Fibonacci number, ask the opponent to go first; if noy piat
and pickk sticks such that — k is the closest Fibonacci number.
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lllumination And Verification

There remained but one twist to complete the solution —tlhe that said you
could pick at mos2k sticks at each turn. Consider= 12. Thisis not a Fibonacci
number; however naivelyapplying the strategy would saggiekingk = 4 sticks

to leave a remainder @& sticks —this allows the second player to win. So | went
back to the initial strategy of decomposing larger gameassntaller ones. Given
n = 12, consider it as a pair of gamé$, 8). You go first, and win the game
for n = 4 by forcing the opponent to the closest Fibonacci nun3béi/hen this
game forn = 4 concludes, the opponent is left to start the next game with 8
which is guaranteed to lose.

My final submission consisted of4) line Fortran program accompanied by
a two-page proof that | typed out on a portable typewritene@ithe size of the
program, it only took me on&0 minute session in the computer room to finish
the assignment.

Looking back, | believe not being able to see gave me a sigmifiadvan-
tage over my fellow students in this instance. Communigatite solution was
an interesting challenge, since | did not have access to @w kanything about
mathematical typesetting. The proof | wrote up was theeefoostly in plain En-
glish. But the implementation that went along with the praatfs the clinching
argument —the program beat everyone who played against it.

6 AJER —Speaking Mathematics

| obtained my first talking computer during the second seenesi
Grad School at Cornell and learntIeX. Then, | found that the
computer couldn’t speak the math | was writing

| took CS 681, the graduate class on algorithms at Cornetierfdll semester
of 1990. The instructor, Dexter Kozen, was using lecturesittpeset in () TeX.
Since | had a computer that could talk, | asked him for tAgIEX sources. After
listening to the speech synthesizer speaKkigX code for a few days, | decided
that | could make it do far better —this eventually led to therkwon audio format-
ting and my PhD thesis entitleé&[ER —Audio System For Technical Readings.
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Saturation

In a sense, the saturation stage for this problem had beggrblefore. Over time,
| had learnt to recruit enthusiastic student volunteers&olmath material for me,
and this required training readers in efficiently speakiogmplex mathematics.
| conceived the idea of getting the computer to spea&kigX documents at the
same time that | learntA)TJpX —a key step in the saturation stage.

| learnt TEX by reading the raw sources for thgXIbook; later, | obtained the
(LA)TeX sources to thefIpX book from Leslie Lamport at DEC Research. This
was a case of jumping in at the deep end —reading gXesburces to the gx
book is not the easiest way to learpXT However, the EX sources were read-
ily available, and once | had overcome the initial hurdleisteining to the gX
markup, I learnt X to a far deeper level than | otherwise might have. This might
not have been necessary if all | had needed to do was to aytKaddcuments;
but a full understanding of thgeX machinery served me well when it came to im-
plementing a system that consumet) TEX documents to produce rich auditory
renderings.

| spent the summer of 1991 at Xerox PARC as a summer interreifttéc-
tronic Documents Lab. This proved to be an excellent enviremt to absorb the
background knowledge in document understanding and elgctdocuments that
| would need to implement the final system. Looking back, léw& this experi-
ence helped me work around some of the lack of access to ntligesature that
might have otherwise held me back in building the right syste

Incubation

The system | built was primarily motivated by my own desirggad math pub-
lications. This meant that | had a significant leg up during iticubation phase
—being the system’s primary customer meant that the feddlmap between
conceiving, implementing and testing out different ideas wxtremely tight. In
1990, | published an early write-up in TugBoat on the predsceto AIER —
a simple SED script calledgXTaLK that transformed @)TeX documents. An
interesting side-benefit of this write-up was that it put meduch with the X
community and in particular Barbara Beaton of the AMS; sluijoled me access
to AMS Bulletins in (B)TeX that | used as input to early prototypes GiiER.

By the middle of 1992, | was well into the incubation phase asady to
implement AJER. | chose Common Lisp Object System (CLOS) as the imple-
mentation language. | was still learning to program in thhgdaand ATER was

15



the first significant software system that | implemented. sTheant that | was
“learning on the job” and needed access to the relevantartermaterial.

By then, | had discovered that | could email authors askimgézess to the
markup sources of books | really needed. Usually, a brigfrijgtson of the project
| was working on, followed by a letter from the publisher grag the author
permission to give me the files was all that was needed. yduaiteived (R)TEX
files which also became input for the system | was buildingeHge some of the
programming books | used in this form:

e Structure And Interpretation Of Computer Programs (SIGP)lbelsen and
Sussman.

e Paradigms of Al Programming by Peter Norvig

e The Common Lisp ANSI specification

| augmented these with excellent online support from Usgreetpcomp.lang.lisp

lllumination

In summer of 1992, | picked David Gries as my Phd adviser.rAftiescribed the
system | was trying to build, he thought about it and said

First design a language in which you can describe how you daait
uments to be spoken.

It took me a week to appreciate the import of this suggestiduttooking back,
this was the final breakthrough that madggR a workable solution. The rest was
relatively easy:

¢ | had the necessary test material in the form of electronakbo
¢ | had the resources | needed to teach myself to program.

¢ | had the end-user (myself) to test the system on.
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Verification

AJIER was implemented during the calendar year 1992 and by e8€$,1 had
started testing the efficacy of the auditory renderings mriggoeople in the CS de-
partment at Cornell write down equations as they heard kepby the system. |
declared the system complete once it reached a level whers carrectly wrote
down what they heard. The final test was to collect a set of allytambiguous
exampleshave these rendered bglgR, and compare the result to the recording
produced by a trained reader from Recordings For the Blinchae® Romine of
the Oakridge Tennessee Labs volunteered to produce alsuitadsett¢ape.

| built AGIER as a tool for reading mathematical documents. But how about
tools for writing mathematics? Despite What You See Is What &et (WYSI-
WYG) systems being the present rage, | believe thgTX markup is still the
best option for writing mathematics when you cannot seeeldez some reasons
why:

e The results of @)TeX markup are predictable. As someone who cannot see
the visual output, | never want to risk getting what | didréesby using a
WYSIWYG system.

e (IA)TEX linearizes the two-dimensional math notation. It is havdihder-
stand that linear notation when you are also trying to uridedsthe under-
lying mathematics being communicated; this is why mathemnaats format
their (1) TeX documents to produce good visual copy.

o AJER audio formatted ()TeX so that the listener could focus on the math
being communicated.

e When you are writing down something you already understémel lin-
earized (M) TeX does not prove as significant a cognitive burden, and given
the drawbacks in WYSIWYG systems mentioned earliey) TEX remains
an attractive authoring solution.

As an aside, the inventor oEX Donald E Knuth mentioned to me when we met
at the TUG95 conference thagX math notation had itself been motivated by
how mathematicians speak expressions when conversingownélanother. Thus,
x_1 + x_2 closely matches what a mathematician would say:

X sub 1 plus x sub 2
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A few years earlier, Brian Kernighan, the inventor of EQNdtaie that the nota-
tion he invented was informed to an extent by his experieficeanrding math
books for Recordings For The Blind in Princeton. | believattinis is more than
a coincidence —simple linearization of two-dimensionakimeanatical notation
as embodied by systems likeX' will probably remain one of the most effective
means for mathematicians to communicate math to the maainee they appear
to closely mirror how we think —at least at the linguisticéév

7 Zome Systems —Rediscovering Mathematics

| discovered Zome Systems in 1999 —my only regret is that haid
have it when | was a student.

| started implementing &R because | found math publications difficult to
read —in 1990 it was because listening )X markup took too much away
from focusing on the mathematical content. When | had firdshglementing
AR in the fall of 1993, | had a system that spoke publicatioosfAMS Bul-
letins very well —but | still couldn’t understand them siridead lost touch with
math.

| rediscovered many of the things | enjoyed about Mathersatiter coming
into contact with Zome Systems in late 1999 —a polyhedralding set that
leverages the symmetries of the dodecahedron/icosahddhank Zome Systems
makes a wonderful teaching aid for students —and even mdoe students who
cannot see.

Saturation

On the surface, Zome appears to be a very visual toy —thesstiekcolor coded.
But like any well-designed system, Zome sports a high leiye@dundancy —the
sticks are also shape-coded.

Understanding the geometry of the Zome ball during the atitur phase pre-
sented interesting challenges. The Zome ball has thres tfffmles —pentagonal,
triangular and rectangular. The ball is therefore flattéh@pentagonal holes, and
as a consequence, if you roll the ball between finger and thitnrkually comes to
rest with a pentagonal hole against the fingertip. Once | igtded this, the next
step was to fully populate a zome ball with sticks of a giveloce—blue (flat),
yellow (triangular) and red (pentagonal) sticks go into dpgropriately shaped
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holes. Fully populating a Zome ball with a given type of stiokkes it easier
to perceive the underlying geometry via touch since thisatifely increases the
resolution.

After buying my first Zome kit at Linuxworld 1999, | looked ipwn the Web
and found many Web sites describing its underlying geometpyimary among
these beingseorge Hart'site on Zome geometry. Later, he provided me online
access to his book on this subject.

Incubation

During this phase, | built several fun models including mémat | had studied in
the context of abstract algebra and group theory. My permtaagorites among
these are:

e The compound o5 cubes.
e The compound 05 tetrahedra.

e The compound 05 rhombic dodecahedra.

In addition, the highly symmetric rhombic triacontahedi®a favorite that shows
up in the context of all of the above models.

[llumination And Verification

After a couple of years of playing with Zome Systems, | puethgr a paper de-
scribing some of the things that could be learnt with my cthauKrishnamoor-
thy —seeVisual Techniques For Computing Polyhedral Volumieauthored this
material (including all figures) in f)TeX. The figures were drawn using package
pstricks | worked with my co-author in ()TEX with email being the primary
form of communication. This is a good example &)X providing a common
language and thereby bridgeing the communication gap thatld face if | still
needed to use a piece of chalk to communicate my ideas.

8 Writing This Essay

To iterate is human, to recur divine.
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To conclude, let us apply the overall framework of this gt the creation of
this essay.

Saturation In a sense, one can consider all of the experiences desaniltbis
essay as forming part of the saturation phase.

Incubation Most of the incubation phase was spent asking myself thetignes
“what does it mean to do math when you cannot see”.

lllumination 1 had a good sense of the material | wanted to cover, but wks sti
searching for a good framework within which to organize whaianted
to convey. At around this time, | was lucky to attend an exxcdltalk by
Murray Gell-mand at Google on the topic of creativity. At thgtset of his
talk, he laid out the steps in the creative process. This hvadinal piece

| needed; | decided to structure the essay in the form you saseptly
reading it.

Verification The verification step remains —it cannot be completed withead-
ers’ comments.
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