
Thinking Of Mathematics
—An Essay On Eyes-free Computing

T. V. Raman
Google Research

http://emacspeak.sf.net/raman
raman@google.com

August 24, 2011

Abstract

This essay outlines some of my experiences as a mathematician who
cannot see. Note that I transitioned to being a Computer Scientist during
Graduate School. However I strongly believe in the edict “Once a mathe-
matician, always a mathematician!” —my training in mathematics continues
to influence the way I think.

I’ve been unable to see since the age of14, which means that I’ve studied
and practiced mathematics predominantly in an eyes-free environment. This
essay is my first conscious attempt at asking the question “What is involved
in doing mathematics when you cannot see?” I hope that some ofthe expe-
riences outlined here will prove insightful to mathematicians at large. At its
heart, mathematics is about understanding the underlying structure inherent
in a given area of interest —and where no such structure exists —to define
the minimal structure that is needed to make forward progress.

The general perception that mathematics might be hard to do in an eyes-
free environment probably traces itself to the common view of mathematics
as a field where one performs copious calculations on paper. I’ll illustrate
some of the habits and abilities one evolves over time to compensate for the
lack of ready access toscratch memoryprovided by pencil and paper when
working in an eyes-free environment. In this essay, I hope todemonstrate
that mathematics in its essence is something far bigger. By being bigger
than “calculations on paper”, not being able to see rarely ifever proves an

1

http://emacspeak.sf.net/raman
mailto:raman@google.com


obstacle when it comes to doing mathematics; the challengesone needs to
overcome are primarily centered around gaining access to mathematical ma-
terial, and communicating ones insights with fellow mathematicians. Thus,
a large portion of this essay focuses on solutions to the challenges inherent
in mathematical communication.

1 Creativity

The phases involved in the creative process were first described by German phys-
iologist Herman Helmholtz in the late nineteenth century. He identified three
stages of creativity:

• saturation,

• incubationand

• illumination

—seePromoting Creativity. These three stages have since been augmented with
the additional step ofverificationby the scientific community.

When I started working on this essay, I found it useful to ask what impact if
any my not being able to see had had on each of these stages within the creative
process when studying or doing mathematics. This introductory section briefly
summarizes my answers to this question —the remaining sections present a de-
tailed analysis based on my experience of working on specificproblems.

Saturation At this stage, one focuses on gaining a good grasp of the problem con-
text. Given that a lot of mathematical literature is only available in print, this
stage can be a challenge, especially when it comes to higher-level mathe-
matics. But to do higher-level mathematics, one first needs to do elementary
mathematics, and I believe that it is even more important to find the right
kind of help when one is beginning to learn. I believe I gaineda signifi-
cant advantage here by virtue of having an elder brother who was a highly
motivated teacher. The challenge of gaining access to higher-level mathe-
matics might appear to be the more complex of the two; howeverI believe
that proper access at the introductory level is far more critical, since good
access at this stage ensures that a student with the necessary mathematical
aptitude remains within the field to go on and solve the challenges that lie
beyond.

2

http://www.survey-software-solutions.com/walonick/creativity.htm


Incubation Having absorbed the relevant material, this stage involvestrying dif-
ferent approaches to making forward progress. In my experience, not being
able to see has little or or no negative impact at this stage; in fact it might
actually be an advantage since one has fewer distractions.

Illumination Not being able to see should not have any negatives at this stage.
In practice, I have often found that I fall into the hole offalseillumination
i.e., concluding that I have solved the problem when I have not fully done
so. This can often be attributed to failures within thesaturationstepe.g.,
missing a key portion of the problem statement, or pursuing an incorrect
approach that has been tried and dismissed by others in the past. As the
world of mathematics goes digital, I believe that tools likeGoogle Scholar
will serve to level the playing field in this regard.

Verification The verification step is closely connected with being able toreliably
communicate mathematical ideas with ones peers. At this stage, it’s impor-
tant to be able to communicate with other mathematicians —traditionally,
this meant writing with a piece of chalk. The move to electronic commu-
nication, and the invention of mathematical notation like TEX comes to the
rescue here. The TEX notationscales—TEX keeps writing simple math sim-
ple, while being capable of encoding complex material. Thanks to TEX, I
can communicate mathematical ideas via email —most mathematicians can
read TEX math —I can also produce beautifully typeset mathematics when
I have something more significant to convey.

2 First Experience —A Mental Calendar

I was 15 and couldn’t see any more; I realized I couldn’t look at a
print calendar to find out the day of the week. I also had time onmy
hands. . .

I decided that an interesting problem to solve would be to figure out how to
tell the day of the week given the date. I had always been good with numbers, and
at the time I was 15 years old and felt I knew enough mathematics to be able to
work out the solution. What’s more, the possibility of beingable to tell the day
given any date seemed far more useful than being able to look at the print calendar
for any given year.

3

http://scholar.google.com


Saturation

In this case, grasping the problem at hand did not require extensive reading —a
lucky coincidence since I had no means of reading any material that I might have
needed. The facts needed for gaining insight into the problem were ready to hand.
After all, even though I couldn’t look at a print calendar, I always knew what day
of the week it wastoday—moreover, by counting either backwards or forwards,
I could also figure out the day of the week fornearbydates.

Once I started down this path, the answer to the first questionI asked myself

What is the reason for the1st of every month not being the same day
of the week?

became readily apparent —given two dates, the change in the day of the week
is given by taking the number of intervening days, and obtaining the remainder
modulo7.As an example, January 1 1980 (the year I did this) was a Tuesday; I
could conjecture that February 1, 1980 would be a Friday, andreadily confirm
that my understanding was correct because I could check the following facts:

• January 1, 1980 was a Tuesday.

• February 1, 1980 was a Friday.

• January has31 days, and31%7 = 3.

Thus, thesaturationphase did not present an obstacle; what’s more, being
forced to count forward/backwards while understanding theproblem meant I had
a leg up with entering theincubationphase.

Incubation

The incubation phase did not last very long in this instance.Given that I had
already started down the path of using modulo7 arithmetic, I already had the
essence of the algorithm at my fingertips —given a date, do thefollowing:

• Compute the number of intervening daysd from today.

• Computed%7.

• Use this offset fromtodayto obtain the answer.

4



Illumination

Though the above steps do give the answer, computingd —the number of inter-
vening days between January 1 and any given date —is cumbersome. I therefore
spent some time computing the day of the week forconvenientdatese.g.,Jan-
uary 1. As I did this, I found computing the number of intervening days between
January 1 and any date in the same year cumbersome. But by thenI had sufficient
insight into the problem to realize that I could apply the previous technique to
compute the day for the first of each month. So most of the incubation phase was
spent getting better at modulo7 arithmetic, and deciding what bits I would need
to remember as opposed to computing on the fly.

I eventually arrived at the following:

• A year has365 days.365%7 = 1, and so January 1 moves by one day each
year (and by2 for a leap year.

• Compute a list of12 numbers that each give the remainderd%7 at the be-
ginning of each month.

• Compute the day of the week for January 1 at the turn of each century to
make calculations easy.

So here is what I still use to look at the calendar. Let Sunday be 0. The
table of offsets for the12 months (assuming February has28 days) is obtained
by computingd%7 for each month whered is the number of intervening days
between the first of the month and January 1. Thus, the offset for January is0.
The offset for monthm is given by

offsetm = offsetm−1 + (D(m − 1)%7)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

31 28 31 30 31 30 31 31 30 31 30 31
0 3 3 6 1 4 6 2 5 0 3 5

Given a date(m, d, y), computew = M7 + d7 + y7, where:

• m7 is the offset for the month obtained by looking up the month inthe table
of offsets.

• d7 = d%7.

5



• Let yy = y − 1900 theny7 = (y + y/4)%7. The offset for the year 1900
is 0 since January 1 that year was a Monday —the offsets at the turn of the
century cycle through(6, 4, 2, 0).

Notice that the above computation adds in the extra day for leap years for all
dates. Since the extra day is in fact added in at the end of February, thew com-
puted above needs to be decremented by1 when working with dates in January
and February of a leap year.

Verification

Verification in this instance turned into a fun party trick —turns out that most
people remember the day of the week for significant days in their life, and what’s
more, always ask you to verify their special day. They are also quick to tell you
when you’re wrong, which means you get an opportunity to bothverify the algo-
rithm, as well as checking your own ability to apply it successfully.

3 Solving The Rubik’s Cube

I learnt Braille when I was 17. The Rubik’s Cube came to India around
the same time, and marking a Rubik’s Cube with Braille dots was the
first useful thing I did with my newly acquired ability.

Saturation

I first heard of the Rubik’s Cube on the BBC’s Science In Action—growing up,
the BBC World Service was something I listened to all the time. It took a few
more months before the cube arrived in India —sometime in early 1982 which is
also when I learnt Braille.

My initial exposure to the cube came via observing everyone around struggling
to solve it and failing —this in itself was sufficiently motivating to want to solve
it. I started by placing my finger on a given facelet of an unmarked cube and
observing how it moved as I turned the various faces. At this stage, not being able
to see the colors on the cube probably saved me from getting just as confused as
everyone else around me. It also gave me the somewhat false impression that this
wasn’t going to be very difficult —a lucky misconception —because it also meant
that I did not get discouraged early on.

6



As I began to discover patterns of movement on the cube, I feltthe need to
remember some of these patterns so that I could connect different things I discov-
ered on the cube. I also discovered that it was important to hold the cube in a
fixed orientation —otherwise I found myself getting very confused. I soon started
referring to the bottom face as1, the front face as2 and the left face as3. When-
ever I discovered a sequence of face turns that I could predictably apply to move a
facelet from a given position to another without disturbingits neighbours, I started
associating a string of digits to that sequence. Notice thatas a notation this was in
fact incomplete —it fails to record the direction (clockwise vs counter-clockwise)
that a face is being turned. But it was a key step in the saturation stage as I came
to grips with the puzzle.

Still working with an unmarked cube, I also discovered the difference between
edge cubelets (pieces that have two colors on them) vs cornercubelets (pieces that
have three colors). I also realized that the face centers didnot move at all, and were
responsible for determining the color of a face. Since I was doing this by carefully
holding a fingertip on a chosen piece, I also arrived at the useful insight that it was
important to solve the cube a layer at a time —andnot a face at a time.

Incubation

The incubation stage in this instance lasted almost a week from memory. Plac-
ing a fingertip on a piece and observing its motion was a good means of gaining
insight into the puzzle. But as I made progress in that direction, things also got
more and more confusing since I was now trying to do more complex steps. After
doing complex hand contortions where I tried to track multiple pieces by plac-
ing different fingers on the pieces to track while attemptingto turn cube faces, I
realized that I needed tactile markers on the cube faces to make further progress.

At this point, my brother marked a Rubik’s Cube with Braille stickers. We left
the white face blank, and stuck small squares of relatively thick polythene marked
with different Braille symbols on the 5 remaining faces.

I now got to experience first-hand why everyone else around mewas so con-
fused by the cube. But my earlier explorations during the saturation face had
helped me build up an intuitive feel for how things worked. Needless to say, I was
able to correct many of my prior misconceptions. I also fixed up my primitive
notational system for remembering commonly occurring sequences —I attached
± to the digits to denote the direction in which a face was beingturned.

At this point, I believe I had achieved parity with respect toattempting to
solve the cubei.e.,not being able to see did not matter any more. From here on,

7



my arriving at the solution went through the same sequence ofeffort, frustration
and eventual success that everyone goes through when confronted with the cube.

Illumination

A week after marking the cube with Braille dots, I had an end-to-end solution that
I believed worked. Given a randomly mixed cube, I went about it by:

• Start with the blank (white) face —identified by its center —on top.

• Move the edge cubelets of the top layer into position.

• Move the corner cubelets of this layer into position.

• Move the edge cubelets that made up the second layer into position.

• Move the corner cubelets on the bottom layer into their slots.

• Move the edge cubelets in the bottom layer into position.

• Orient the edge and corner cubelets correctly on the bottom layer.

Verification

After claiming to have solved the cube, and reliably solvingit a few times, I got
my first rude surprise —someone mixed it up and I found I reached a configuration
for which I had not worked out a reliable sequence of moves. Thus, in this case
verification was iterative.

The problem was that I had missed the possibility that one canplace a pair
of cubes in the bottom layer in their home position and still have the other pair
swapped. By this time, I was sufficiently well-versed in the secrets of the cube to
derive the sequence of moves needed to dig myself out of this hole.

After finally learning to solve the cube, I spent the subsequent months deriving
different shortcuts that allowed me to move multiple piecesinto position in par-
allel —eventually I could solve the cube on average in under30 seconds. I even
relaxed one of my early constraints —having to hold the cube in a fixed orienta-
tion —when I solved the cube one-handed. Solving a Braille cube one-handed is
an interesting challenge because I was using the same hand toboth feel the Braille
markers and turn the cube faces. Doing this requires physically orienting the cube
in your hand so that you can turn a given face; this means that your mental model
of the cube needs to account at each stage for a completely re-oriented cube.

8

http://video.google.com/videoplay?docid=-4180435763269825467


Insights

Discovering the algorithm for computing the day given a dateas well as solving
the cube did not require doing mathematics in the traditional sense. Neither re-
quired me to access significant amounts of existing mathematical literature. When
I had arrived at the solution, communicating the result was also easy. Thus, the
two steps where not being able to see could potentially get inthe way were in fact
easy. At the same time, not being able to see helped me focus onthe problem to a
greater extent than I otherwise might have; additionally, Imight not have been as
motivated if I had been able to see.

4 Devising An Efficient Braille Notation For Math

I spent a year attempting to chase down the Nemeth Braille code for
writing Math. I finally gave up and created my own in the summerof
1983. . .

Saturation

During my first year of school after learning Braille, I triedin vain to chase down
the Nemeth code for writing math in Braille. This was 1982 in India, i.e.,before
the global availability of email. After mailing out many letters with nothing to
show for it, I spent the summer of 1983 designing a math notation that I could use
for taking class notes in Braille. Here are some of the requirements that went into
this design:

Succinct The notation had to be sufficiently succinct to enable me to write at
classroom speeds using apocket slate.

Extensible The system had to be extensible to enable me to invent notation on
the flyas I encountered new concepts and their accompanying mathematical
notation in class.

Speed The notation had to be sufficiently concise to enable someonelike myself
who had learnt Braille late in life to read fast. This meant minimizing the
number of dots it took to write —something that meshed well with the goal
of succinctness —fewer dots are both quicker to read and write!

9

http://www.google.com/search?q=Braille+pocket+slate+&num=25


Incubation

I experienced first-hand what it meant to study mathematics without access to a
good reading/writing system during the 1982 academic year.I was in the11th
grade, and relied exclusively on my brother to read me textbooks. I gave written
exams with awriter —a student who would read me the question and write down
the answer as I dictated. This necessarily forced me to practice solving problems
a step at a time and dictating each step to the writer.

Solving problems in this mode is distinct from solving math problems men-
tally. Notice that the presence of the writer meant that I didhave access toscratch
memory of sorts. Dictating each step to the writer, having itread back to confirm
that it had been written correctly, and proceeding to the next step meant that I
needed to usementalcalculation only for individual steps. This actually required
a fair bit of practice since it was always tempting to try to solve problems in cal-
culus or trigonometry end-to-end and then dictate the solution. In practice this is
both error-prone and unnecessary —especially given an examsystem that focuses
on the student’s ability to finish a given number of problems in the allotted time.

Illumination

The abilities I developed during the academic year 1982–1983 served me well
on two counts. The ability to break down a problem and work through it sys-
tematically is more broadly useful than when taking timed exams with a writer.
Secondly, my experience that year helped me implicitly understand the design re-
quirements enumerated earlier for my ideal Braille notation for mathematics. I
spent the summer of 1983 designing such a system and continued to use the result
throughout my student career.

The Braille notation I developed had the following features:

Phonetic To meet the succinctness requirement, I first created myselfa phonetic
shorthand in Braille. A Braille cell has6 dots arranged in a3 × 2 matrix
to give 63 distinct symbols. The shorthand I devised dropped all vowels,
and used different symbols for commonly occurring syllables. Further, the
position of a symbol within a word changed the syllable that it denoted.
As an example, the Braille character obtained by using the two dots in the
bottom row of the3 × 2 matrix denoted the syllablepr at the front of a
word; it denoted the syllablecy at the end of a word. I therefore wrote the
word pricy by repeating this character. Writing the wordpricy in standard

10



Braille would take5 characters comprised of(4, 4, 2, 2, 5) = 17 dots. In
comparison my shorthand could encode the same word with2 characters
that used(2, 2) = 4 dots.

Math Escapes Braille is essentially a linear writing system —later, I came to ap-
preciate that computer-based writing systems like TEX are also linear. To en-
code two-dimensional math notation, I assigned particularBraille symbols
to denote the start of subscripts or superscripts —I later came to recognize
these as escape sequences when I learnt computer science. I used parenthe-
ses to group sub-expressions. I used a special symbol to precede English
letters to denote that the symbol was the Greek equivalent —as a computer
scientist, I now recognize this as placing a symbol in a new namespace.

Verification

I started using the resulting Braille codes in class during the academic year 1983–
84 and to my surprise it worked very well. I had beentaught to write with my
right-hand when I was very young. I suspect that if left to my own devices, I
would have written with my left-hand —since I could see with my left eye. When
I learnt Braille, this too turned into an advantage —I started reading Braille with
my left hand. The ability to write right-handed while being able to read with my
left-hand meant that I could read and write in parallel —something that proved
quite useful when doing mathematics.

Both the Braille writing system I devised —as well as the divide and conquer
strategy for problem solving during examsscaledwell. I invented new symbols
as I learnt more mathematics and encountered newer notation; but the underlying
notational system never changed. When I encountered new concepts and associ-
ated new notation in class, I always asked what the visual notation was, and then
invented a Braille notation that best matched. This also made it easy for me to
remember the visual notation (which I would need to know whendictating my
exams). As an example, when I first encountered group theory,the notation for
group〈G, +〉 was described to me in class as

G, + enclosed in angle brackets

I automatically chose the Braille symbols I had previously used for< and> as a
new pair of delimiters. For the record, I always sat in front of the class and insisted
that every instructor spoke as they wrote on the blackboard —further, I was never

11



shy if I heard the squeak of a chalk without an accompanying utterance from the
person at the board.

Similarly, the strategy of solving written problems a step at a time and us-
ing the previously written step to provide scratch memory also scaled from high-
school calculus to college-level mathematics. As an example, I took a class on
Linear Programming in college and still have unpleasant memories of having to
solvetransportationproblems using the Vogel’s Approximation Method in timed
exams. These experiences gave me two key insights that have served me well:

• Specific mathematical techniquese.g.,differentiation, integration or the Sim-
plex method are algorithms.

• To truly appreciate an algorithm and understand how it works, one needs to
be able torun it by hand on a representative set of examples.

• In mathematics, this translates to being able to differentiate or integrate a
given expression.

• The latter requires a set ofsemi-mechanicalsteps and this is where one uses
aids such asscratchmemory provided by pencil and paper —something for
which I needed to compensate.

• However, a true understanding of the underlying algorithm is far more im-
portant than any specific technique that one might devise forrunning the
algorithm on specific instances.

5 Learning To Program

Asked to program a game in CS 101, I expressed the game as a recur-
rence equation and solved it —it made for a very short programthat
alwayswon the game. . .

Saturation

I was asked to program the following two-person nimm-type game for a final class
assignment. Here are the rules:

• The game starts withn sticks on the table, with each player taking turns to
pick upk sticks.

12



• The first player can pick up at mostn − 1 sticks.

• Assume that a player picksk sticks at a given turn. Then his opponent can
pick up at most2k sticks.

• The player who picks up the last set of sticks wins.

We had been taught the technique of searching through game trees in class
and were expected to use this to complete the assignment. To provide some addi-
tional context, CS 101 students at IIT were assigned limitedamounts of computer
time —typically 60 minutes slots between the hours of 10pm and 5am. I used to
program by taking along a student to read the display for me.

Incubation

I was highly motivated to devise a solution that would not require me to go multi-
ple times in the middle of the night to the computer room to implement a solution.
I like sleeping early and well, and finding willing volunteers in the middle of the
night is not easy. The problem description was simple, and not being able to see
was not a shortcoming at the saturation stage. It turned out to be a significant
advantage during the incubation phase. While the rest of my peers begged and
borrowed additional computer time to implement a game-treebased solution, I
spent my time thinking about the problem in the relative comfort of my dorm
room.

Analyzing the game, I simulated it for small values ofn and discovered the
following:

• The game is meaningless forn = 1.

• If n = 2 the first player loses.

• If n = 3, first player loses.

• If you play two successive games(n1, n2), where the first player is guar-
anteed to lose each game, then the first player can be forced tolose for
n = n1 + n2.

As I jotted down the numbers(1, 2, 3, 2 + 3 = 5), and observed above facts, I
spotted the Fibonacci sequence. I initially conjectured that the first player would
always lose ifn was a Fibonacci number. This then indicated a possible winning
strategy; ifn is a Fibonacci number, ask the opponent to go first; if not, play first
and pickk sticks such thatn − k is the closest Fibonacci number.

13



Illumination And Verification

There remained but one twist to complete the solution —the rule that said you
could pick at most2k sticks at each turn. Considern = 12. This is not a Fibonacci
number; however naı̈velyapplying the strategy would suggest pickingk = 4 sticks
to leave a remainder of8 sticks —this allows the second player to win. So I went
back to the initial strategy of decomposing larger games into smaller ones. Given
n = 12, consider it as a pair of games(4, 8). You go first, and win the game
for n = 4 by forcing the opponent to the closest Fibonacci number3. When this
game forn = 4 concludes, the opponent is left to start the next game withn = 8

which is guaranteed to lose.
My final submission consisted of a40 line Fortran program accompanied by

a two-page proof that I typed out on a portable typewriter. Given the size of the
program, it only took me one30 minute session in the computer room to finish
the assignment.

Looking back, I believe not being able to see gave me a significant advan-
tage over my fellow students in this instance. Communicating the solution was
an interesting challenge, since I did not have access to or know anything about
mathematical typesetting. The proof I wrote up was therefore mostly in plain En-
glish. But the implementation that went along with the proofwas the clinching
argument —the program beat everyone who played against it.

6 ASTER —Speaking Mathematics

I obtained my first talking computer during the second semester of
Grad School at Cornell and learnt (LA)TEX. Then, I found that the
computer couldn’t speak the math I was writing. . .

I took CS 681, the graduate class on algorithms at Cornell in the fall semester
of 1990. The instructor, Dexter Kozen, was using lecture notes typeset in (LA)TEX.
Since I had a computer that could talk, I asked him for the (LA)TEX sources. After
listening to the speech synthesizer speak (LA)TEX code for a few days, I decided
that I could make it do far better —this eventually led to the work on audio format-
ting and my PhD thesis entitledASTER —Audio System For Technical Readings.

14

http://www.acm.org/awards/dd_citation/1994B.html


Saturation

In a sense, the saturation stage for this problem had begun long before. Over time,
I had learnt to recruit enthusiastic student volunteers to read math material for me,
and this required training readers in efficiently speaking complex mathematics.
I conceived the idea of getting the computer to speak (LA)TEX documents at the
same time that I learnt (LA)TEX —a key step in the saturation stage.

I learnt TEX by reading the raw sources for the TEX book; later, I obtained the
(LA)TEX sources to the LATEX book from Leslie Lamport at DEC Research. This
was a case of jumping in at the deep end —reading the TEX sources to the TEX
book is not the easiest way to learn TEX. However, the TEX sources were read-
ily available, and once I had overcome the initial hurdle of listening to the TEX
markup, I learnt TEX to a far deeper level than I otherwise might have. This might
not have been necessary if all I had needed to do was to author TEX documents;
but a full understanding of the TEX machinery served me well when it came to im-
plementing a system that consumed (LA)TEX documents to produce rich auditory
renderings.

I spent the summer of 1991 at Xerox PARC as a summer intern in the Elec-
tronic Documents Lab. This proved to be an excellent environment to absorb the
background knowledge in document understanding and electronic documents that
I would need to implement the final system. Looking back, I believe this experi-
ence helped me work around some of the lack of access to relevant literature that
might have otherwise held me back in building the right system.

Incubation

The system I built was primarily motivated by my own desire toread math pub-
lications. This meant that I had a significant leg up during the incubation phase
—being the system’s primary customer meant that the feedback loop between
conceiving, implementing and testing out different ideas was extremely tight. In
1990, I published an early write-up in TugBoat on the predecessor to ASTER —
a simple SED script called TEXTALK that transformed (LA)TEX documents. An
interesting side-benefit of this write-up was that it put me in touch with the TEX
community and in particular Barbara Beaton of the AMS; she provided me access
to AMS Bulletins in (LA)TEX that I used as input to early prototypes of ASTER.

By the middle of 1992, I was well into the incubation phase andready to
implement ASTER. I chose Common Lisp Object System (CLOS) as the imple-
mentation language. I was still learning to program in the large, and ASTER was

15



the first significant software system that I implemented. This meant that I was
“learning on the job” and needed access to the relevant reference material.

By then, I had discovered that I could email authors asking for access to the
markup sources of books I really needed. Usually, a brief description of the project
I was working on, followed by a letter from the publisher granting the author
permission to give me the files was all that was needed. usually I received (LA)TEX
files which also became input for the system I was building. Here are some of the
programming books I used in this form:

• Structure And Interpretation Of Computer Programs (SICP) by Abelsen and
Sussman.

• Paradigms of AI Programming by Peter Norvig

• The Common Lisp ANSI specification

I augmented these with excellent online support from Usenetgroupcomp.lang.lisp.

Illumination

In summer of 1992, I picked David Gries as my Phd adviser. After I described the
system I was trying to build, he thought about it and said

First design a language in which you can describe how you wantdoc-
uments to be spoken.

It took me a week to appreciate the import of this suggestion —but looking back,
this was the final breakthrough that made ASTER a workable solution. The rest was
relatively easy:

• I had the necessary test material in the form of electronic books.

• I had the resources I needed to teach myself to program.

• I had the end-user (myself) to test the system on.

16



Verification

ASTER was implemented during the calendar year 1992 and by early 1993, I had
started testing the efficacy of the auditory renderings by having people in the CS de-
partment at Cornell write down equations as they heard it spoken by the system. I
declared the system complete once it reached a level where users correctly wrote
down what they heard. The final test was to collect a set of mutually ambiguous
examples, have these rendered by ASTER, and compare the result to the recording
produced by a trained reader from Recordings For the Blind —Chuck Romine of
the Oakridge Tennessee Labs volunteered to produce a suitable cassettetape.

I built ASTER as a tool for reading mathematical documents. But how about
tools for writing mathematics? Despite What You See Is What You Get (WYSI-
WYG) systems being the present rage, I believe that (LA)TEX markup is still the
best option for writing mathematics when you cannot see. Here are some reasons
why:

• The results of (LA)TEX markup are predictable. As someone who cannot see
the visual output, I never want to risk getting what I didn’t see by using a
WYSIWYG system.

• (LA)TEX linearizes the two-dimensional math notation. It is hard to under-
stand that linear notation when you are also trying to understand the under-
lying mathematics being communicated; this is why mathematicians format
their (LA)TEX documents to produce good visual copy.

• ASTER audio formatted (LA)TEX so that the listener could focus on the math
being communicated.

• When you are writing down something you already understand,the lin-
earized (LA)TEX does not prove as significant a cognitive burden, and given
the drawbacks in WYSIWYG systems mentioned earlier, (LA)TEX remains
an attractive authoring solution.

As an aside, the inventor of TEX Donald E Knuth mentioned to me when we met
at the TUG95 conference that TEX math notation had itself been motivated by
how mathematicians speak expressions when conversing withone another. Thus,
x_1 + x_2 closely matches what a mathematician would say:

x sub 1 plus x sub 2

17

http://www.cs.cornell.edu/home/raman/aster/aster-toplevel.html
http://www.cs.cornell.edu/Info/People/raman/rfb-math-workshop/cfp.txt


A few years earlier, Brian Kernighan, the inventor of EQN told me that the nota-
tion he invented was informed to an extent by his experience of recording math
books for Recordings For The Blind in Princeton. I believe that this is more than
a coincidence —simple linearization of two-dimensional mathematical notation
as embodied by systems like TEX will probably remain one of the most effective
means for mathematicians to communicate math to the machine, since they appear
to closely mirror how we think —at least at the linguistic level.

7 Zome Systems —Rediscovering Mathematics

I discovered Zome Systems in 1999 —my only regret is that I didnot
have it when I was a student. . .

I started implementing ASTER because I found math publications difficult to
read —in 1990 it was because listening to (LA)TEX markup took too much away
from focusing on the mathematical content. When I had finished implementing
ASTER in the fall of 1993, I had a system that spoke publications from AMS Bul-
letins very well —but I still couldn’t understand them sinceI had lost touch with
math.

I rediscovered many of the things I enjoyed about Mathematics after coming
into contact with Zome Systems in late 1999 —a polyhedral building set that
leverages the symmetries of the dodecahedron/icosahedron. I think Zome Systems
makes a wonderful teaching aid for students —and even more sofor students who
cannot see.

Saturation

On the surface, Zome appears to be a very visual toy —the sticks are color coded.
But like any well-designed system, Zome sports a high level of redundancy —the
sticks are also shape-coded.

Understanding the geometry of the Zome ball during the saturation phase pre-
sented interesting challenges. The Zome ball has three types of holes —pentagonal,
triangular and rectangular. The ball is therefore flatter atthe pentagonal holes, and
as a consequence, if you roll the ball between finger and thumb, it usually comes to
rest with a pentagonal hole against the fingertip. Once I understood this, the next
step was to fully populate a zome ball with sticks of a given color —blue (flat),
yellow (triangular) and red (pentagonal) sticks go into theappropriately shaped

18



holes. Fully populating a Zome ball with a given type of stickmakes it easier
to perceive the underlying geometry via touch since this effectively increases the
resolution.

After buying my first Zome kit at Linuxworld 1999, I looked it up on the Web
and found many Web sites describing its underlying geometry—primary among
these beingGeorge Hart’ssite on Zome geometry. Later, he provided me online
access to his book on this subject.

Incubation

During this phase, I built several fun models including manythat I had studied in
the context of abstract algebra and group theory. My permanent favorites among
these are:

• The compound of5 cubes.

• The compound of5 tetrahedra.

• The compound of5 rhombic dodecahedra.

In addition, the highly symmetric rhombic triacontahedronis a favorite that shows
up in the context of all of the above models.

Illumination And Verification

After a couple of years of playing with Zome Systems, I put together a paper de-
scribing some of the things that could be learnt with my co-author Krishnamoor-
thy —seeVisual Techniques For Computing Polyhedral Volumes. I authored this
material (including all figures) in (LA)TEX. The figures were drawn using package
pstricks. I worked with my co-author in (LA)TEX with email being the primary
form of communication. This is a good example of (LA)TEX providing a common
language and thereby bridgeing the communication gap that Iwould face if I still
needed to use a piece of chalk to communicate my ideas.

8 Writing This Essay

To iterate is human, to recur divine. . .

19

http://www.georgehart.com/zomebook/zomebook.html
http://emacspeak.sf.net/raman/publications/polyhedra/


To conclude, let us apply the overall framework of this article to the creation of
this essay.

Saturation In a sense, one can consider all of the experiences describedin this
essay as forming part of the saturation phase.

Incubation Most of the incubation phase was spent asking myself the question
“what does it mean to do math when you cannot see”.

Illumination I had a good sense of the material I wanted to cover, but was still
searching for a good framework within which to organize whatI wanted
to convey. At around this time, I was lucky to attend an excellent talk by
Murray Gell-mand at Google on the topic of creativity. At theoutset of his
talk, he laid out the steps in the creative process. This was the final piece
I needed; I decided to structure the essay in the form you are presently
reading it.

Verification The verification step remains —it cannot be completed without read-
ers’ comments.

20


